Пиши Дома Нужные Работы

Обратная связь

Адсорбция на поверхности раздела твердое вещество — газ.

Адсорбция газа на твердом теле является простейшим случаем адсорбционного процесса, так как система состоит всего из двух компонентов. Конкретный пример такой адсорбции мы рассмотрели в предыдущем параграфе. Опыт показывает, что при прочих рав­ных условиях для твердого адсорбента и данного адсорбируемого газа количество адсорбируемого вещества будет возрастать по ме­ре увеличения адсорбирующей поверхности. Следовательно, чтобы достигнуть большого адсорбционного эффекта, необходимо иметь как можно большую поверхность поглотителя. Способность адсорбента к поглощению газов определяется не только его пористостью, но и физическим состоянием; так, адсорбенты в аморфном состоя­нии лучше адсорбируют газы, чем в кристаллическом. В качестве адсорбентов на практике применяют древесный и ко­стяной угли, силикагель, высокодисперсные металлы, полученные восстановлением их из оксидов.

Активированный уголь как адсорбент применяет­ся в противогазах, а также для очистки воздуха на промышленных предприятиях, для осветления различных растворов и т. п. Высо­кая адсорбционная способность активированного угля объясня­ется, сильно развитой поверхностью. Так,, суммарная поверхность всех пор, заключающихся в 1 г такого угля, составляет от 300 до 1000 м2. Такая огромная площадь обус­ловливает возникновение большого молекулярного силового поля и, стало быть, избыток поверхностной энергии на границе уголь — газ. За счет свободной поверхностной энергии и происходит адсорб­ция газа, т. е. повышение его концентрации в поверхностном слое угля при одновременном понижении концентрации газа в окружа­ющем пространстве.



Как показали исследования, время пребывания молекул газа на поверхности твердого адсорбента очень мало: они удерживают­ся на адсорбенте всего сотые и тысячные доли секунды и, десорбируясь, замещаются на новые частицы. В конечном итоге устанавли­вается динамическое равновесие между свободными и адсорбиро­ванными молекулами. Скорость достижения адсорбционного рав­новесия для разных газов неодинакова: при адсорбции СО2 на угле равновесие наступает через 20 с, при адсорбции О2— через 2,5 ч, при адсорбции N2— через 20 ч и т. п. Скорость адсорбции имеет большое значение для практического использования различных ад­сорбентов. Например, в широко используемом при химической за­щите противогазе проходящий через коробку воздух должен очень быстро очищаться от примесей отравляющих веществ. Это возмож­но лишь при высоких скоростях адсорбционных процессов.

Активированный уголь в противогазе играет роль не только адсорбента целого ряда отравляющих веществ, но и катализатора реакции разложения многих из них. В качестве примера можно указать на каталитический гидролиз фосгена

или хлорпикрина

Опыт показывает, что адсорбция зависит не только от приро­ды поглотителя, но и от природы поглощаемого газа, при прочих равных ус­ловиях сильнее адсорбируются те газы, которые легче конденсиру­ются в жидкость. Следовательно, они обладают более высокой температурой кипения в сжиженном состоянии.

Для объяснения явлений адсорбции существуют различные тео­рии. Одна из них — физическая теория, согласно которой природа адсорбционных сил чисто физическая и связана с проявлением межмолекулярных сил. Согласно химической теории ненасыщенные силы адсорбционных поверхностных слоев являются химическими (валентными) силами.

Известно несколько теорий физической адсорбции, из которых интерес представляет теория мономолекулярной адсорбции Ленгмюра (1915). В построении ее ученый опирался на представление об адсорбционных силах, которые впервые были высказаны рус­ским ученым Л. Г. Гуревичем. Основные положения теории Ленгмюра:

1. Адсорбция вызывается валентными силами или силами оста­точной химической валентности.

2. Адсорбция происходит не на всей поверхности адсорбента, а лишь на активных центрах этой поверхности. Такими центрами являются углубления и выступы, имеющиеся на любой, даже самой гладкой поверхности. Действие таких центров сводится к высокой ненасыщенности их силового поля, благодаря чему центры удержи­вают газовые молекулы. Причем активность центра тем выше, чем меньше насыщена молекула или атом адсорбента.

3. Адсорбционные силы обладают малым радиусом действия, вследствие чего каждый активный центр адсорбирует лишь одну молекулу адсорбтива, и на адсорбенте образуется мономолекуляр­ный слой адсорбтива.

4. Адсорбированные молекулы газа не сидят прочно на поверх­ности адсорбента; они непрерывно обмениваются с молекулами в газовой сфере, при этом устанавливается динамическое адсорбци­онное равновесие. Каждая молекула задерживается в течение ко­роткого времени на поверхности, затем в результате флуктуации энергии молекулы отрываются от активного центра, уступая место новой молекуле.

В отличие от физической адсорбции химическая адсорбция, или хемосорбция, осуществляется при помощи химических сил. Эти виды адсорбции имеют следующие отличительные признаки: физи­ческая адсорбция — явление обратимое, и теплота ее составляет всего 8,4—33,5 кДж/моль, в то время как теплота химической ад­сорбции достигает десятков и сотен кДж/моль.

С повышением тем­пературы физическая адсорбция уменьшается, а химическая уве­личивается.

Объясняется это тем, что химическая адсорбция требу­ет более значительной энергии активации (40—120 кДж/моль).

Химическая адсорбция необратима, поэтому процесс десорбции состоит не в простом отрыве адсорбированной молекулы, а в раз­ложении поверхностного химического соединения. В качестве ти­пичного примера химической адсорбции можно назвать адсорбцию кислорода на поверхности угля.

Весьма характерным является то, что при нагревании с поверх­ности адсорбента удаляется не кислород, а окись углерода.

Согласно современным представлениям при адсорбции проявля­ются все виды физических и химических сил, т. е. адсорбция, по существу, является физико-химическим процессом. И действитель­но, советские ученые Н. А. Шилов, М. М. Дубинин, Л. К. Лепинь установили, что при различных случаях адсорбции играют роль физические и химические взаимодействия между адсорбентом и адсорбируемым веществом. Это особенно четко проявляется при адсорбции газов. Исследования показали, что при поглощении первых порций газа на чистой поверхности адсорбента чаще проявляется действие химических сил, а при последующей адсорбции газа, при повышении давления процесс переходит постепенно в чисто физический.

 

Изотермы адсорбции.

Как показали исследования, адсорбция увеличивается с ростом давления (концентрации) газа, однако это увеличение не беспре­дельно. Для каждого адсорбируемого га­за (при t = const) через некоторое время над адсорбентом устанавливается пре­дельная величина адсорбции, отвечающая равновесию между обеими фазами. Кри­вая зависимости адсорбции от давления (концентрации) при постоянной темпера­туре носит название изотермы адсорбции. Она является одной из важнейших харак­теристик адсорбционных процессов. На рис. 5.2 изображены типичные изотермы адсорбции СО2 углем при различных тем­пературах, взятые из работы А. А. Ти­това.

Как видно из рис. 5.2, повышение дав­ления газа Рис 5.2 увеличивает адсорбируемое количество его. Однако на разных участ­ках изотермы адсорбции это влияние ска­зывается неодинаково .

Наиболее силь­ным оно оказывается в области низких давлений, где адсорбция подчиняется закону Генри для раствори­мости газов в жидкостях, т. е. она прямо пропорциональна давлению газа.

Дальнейшее повышение давления тоже увеличивает количество адсорбированного газа, но уже во все уменьшающейся степени. И, наконец, при достаточно высоких давлениях кривая стремится к прямой, параллельной оси абсцисс. В этом случае достигнуто полное насыщение адсорбента и повышение давления газа уже не влияет на его адсорбцию.

Таким образом, между адсорбцией и давлением (концентрацией) газа отсутствует прямая пропорциональная зависимость. Это и вызвало необходимость найти математическое выражение, которое достаточно точно описало бы экспериментальные данные. Впервые эмпирическое уравнение, которым пользуются и в настоящее время, было предложено Фрейндлихом. Это уравнение имеет следующий вид:

5.3  

где х/m— величина адсорбции на единицу массы адсорбента; р — равновесное давление газа над поглотителем (для растворов поль­зуются равновесной концентрацией С), К и 1/n — константы ад­сорбции, характерные для данного процесса адсорбции в опреде­ленных пределах, значение которых можно найти из опытных дан­ных.

Рассмотрим, как определяются численные значения констант. На рис. 5.3, а дано графическое изображение уравнения для слу­чая адсорбции из жидкости. По оси абсцисс отложены равновес­ные концентрации С (кмоль/м3), по оси ординат — значения х/m

Рис 5.3

(кмоль/кг). Если прологарифмировать уравнение (5.3), получим следующее выражение:

5.4  

 

из которого можно найти значения постоянных К 1/п. Для этой цели построим график, выражающий зависимость lg х/m — lg С. Получается прямая линия (рис. 5.3 ,б), отсекающая на оси орди­нат отрезок, равный lg К, а тангенс угла наклона этой прямой к абсциссе дает значение 1/n.

Уравнение (5.4) есть уравнение прямой линии. Несмотря на то, что уравнение Фрейндлиха широко применяется на практике, оно имеет определенные недостатки. Многочисленные исследования показали, что значение адсорбции, вычисляемое на основании этого уравнения, не соответствует данным опыта в области малых и боль­ших концентраций. Константы К и 1/n являются чисто эмпириче­скими и не имеют реального физического смысла.

Позднее (1917) Ленгмюр вывел простейшее уравнение адсорб­ции для случая адсорбции газа на гладкой твердой поверхности (стекло, слюда, монокристаллы), оказавшееся в дальнейшем при­менимым и к другим поверхностям раздела. При выводе своего уравнения Ленгмюр исходил из допущения, что адсорбционный слой мономолекулярен, т. е. только один слой молекул связан си­лами молекулярного сцепления с поверхностью. При этом указан­ный слой полностью поглощает собой все адсорбционные силы по­верхности адсорбента, поэтому образование второго слоя адсорби­рованных молекул исключается.

Число активных мест поверхности ученый принял равным еди­нице, а долю активных мест, связанных с адсорбированными моле­кулами, обозначил через х. При этом условии свободная часть по­верхности равняется 1—х. Обозначив величину адсорбции через Г и учитывая, что при х=0, Г = 0 и при х=1, Г = Г, он нашел, что х=Г/Г, где Г — количество вещества, адсорбированное единицей поверхности при полном насыщении.

Тогда уравнение Ленгмюра можно записать:

Г = Г   5.5  

Опыт показывает, что уравнение изотермы адсорбции Ленгмю­ра сравнительно удовлетворительно дает количественную характе­ристику адсорбции при низких и при высоких концентрациях по­глощаемого вещества. В отличие от уравнения изотермы Фрейндлиха все величины, входящие в уравнение Ленгмюра, имеют опреде­ленный физический смысл и вполне обоснованы теоретически. Уравнение Ленгмюра исходит из расчета мономолекулярного адсорбционного слоя.

Однако не все ученые разделяют эту точку зрения. По мнению Поляни и ряда других авторов, возможен мно­гослойный адсорбционный слой, причем эта точка зрения имеет некоторое теоретическое и опытное обоснование.

По теории Ленгмюра молекулы адсорбтива, притянутые к от­дельным активным точкам, между собой не взаимодействуют. Од­нако при накоплении в адсорбционном слое молекул веществ, об­ладающих высокой молекулярной массой, между ними могут воз­никнуть значительные силы сцепления. В этом случае уравнение Ленгмюра дает неверные результаты. В ряде случаев, в частности при применении пористых адсорбентов, таких, как уголь, силикагель и др., формула Фрейндлиха дает лучшие результаты, чем уравнение Ленгмюра.

Изотерма Брунауэра – Эммета – Теллера (БЭТ) см. рис.5.4.

Теория адсорбции БЭТ исходит из:

1) адсорбционный слой имеет непостоянную толщину на поверхности адсорбента;

2) тепловой эффект адсорбции ≠ тепловому эффекту конденсации адсорбтива;

3) центры адсорбции – двумерные ячейки на поверхности адсорбента;

4) латеральное взаимодействие отсутствует.

 

Рис. 5.4

При малых P/P0 изотерма БЭТ переходит в изотерму Ленгмюра.

Достоинство:

1)учитывает полимолекулярность слоя адсорбтива.

Недостатки:

1) не учитывает латеральные взаимодействия.

На основе БЭТ – изотермы рассчитывают величину адсорбции для конкретных систем.

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2017 pdnr.ru Все права принадлежат авторам размещенных материалов.