Пиши Дома Нужные Работы

Обратная связь

Моніторинг і прогнозування становища при аварії на ХНО

1. Терміни і визначення при оцінці хімічного становища

 

Оцінка хімічної обстановки - розв’язання завдань і формулювання висновків з аналізу наслідків і ступеня впливу хімічного забруднення на життєдіяльність людей регіону, об’єкти господарювання та визначення заходів щодо їхнього захисту.

Хімічна обстановка — це сукупність умов, які виникають на території міста, района або ОГД внаслідок аварії на хімічно-небезпечному об'єкті (ХНО) і потребують прийняття відповідних заходів захисту.

 

Основні терміни і визначення.

При прогнозуванні масштабів зараження НХР визначаються розміри зон можливого і прогнозованого хімічного зараження.

Зона можливого хімічного зараження (ЗМХЗ) – територія, у межах якої внаслідок зміни напрямку вітру може переміщатися хмара НХР з вражаючими концентраціями.

Прогнозована зона хімічного зараження (ПЗХЗ) – розрахункова зона в межах ЗМХЗ, параметри якої приблизно визначаються за формулою еліпса.

Хімічно небезпечна адміністративно-територіальна одиниця (ХАТО) - адміністративно-територіальна одиниця до якої зараховуються області, райони а також будь-які населені пункти областей, які потрапляють в ЗМХЗ при аваріях на ХНО.

Небезпечна хімічна речовина (НХР) – хімічна речовина, безпосередня чи опосередкована дія якої може спричинити загибель, гостре чи хронічне захворювання або отруєння людей і завдати шкоди довкіллю.

Хімічно небезпечний об’єкт (ХНО) – промисловий об’єкт (підприємство) або його структурні підрозділи, на якому знаходяться в обігу НХР.

Зображення на топографічних картах ПЗХЗ у вигляді еліпса відповідає її розмірам на фіксований момент часу N.



На топографічних картах ЗМХЗ зображається у вигляді сектора, форма і розміри якого залежать від швидкості та напрямку вітру.

Основною характеристикою НХР є токсичність.

Токсичність — це здатність отруйної речовини уражати живий організм.

Ступінь її залежить від фізико-хемічних властивостей НХР і визначається токсодозою (токсичною дозою).

Еквівалентна кількість НХР— це така кількість хлору , масштаб зараження яким в умовах інверсії еквівалентний масштабу зараження кількістю даної речовини при даних погодних умовах.

На масштаби зараження, глибину поширення хмари зараженого повітря істотно впливають метеорологічні умови. Вони формують стан вертикальної стійкості атмосфери.

Вертикальна стійкість атмосфери має три стани:

Інверсія — зростання температури повітря з висотою. Такий стан приземного шару атмосфери перешкоджає розсіюванню зараженого повітря по висоті і створює найбільш сприятливі умови для збереження високих концентрацій СДОР.

Ізотермія — характеризується стабільною рівновагою повітря. Це також сприяє тривалому застою парів СДОР на місцевості, в лісі, в житлових кварталах міст і населених пунктів.

Конвекція — зниження температури повітря з висотою. Спостерігаються висхідні потоки повітря, що сприяє швидкому розсіюванню хмари зараженого повітря і зменшенню уражаючої дії НХР.

Хмара НХР - суміш пари і дрібних крапель НХР із повітрям в обсягах (концентраціях), небезпечних для довкілля (уражаючих концентраціях). Розрізняють первинну і вторинну хмару забрудненого повітря.

Первинна хмара НХР - це пароподібна частина НХР, яка є в будь-якій ємності над поверхнею зрідженої НХР і яка виходить в атмосферу безпосередньо при руйнуванні ємності (за 1-2 хв) без випару з підстильної поверхні.

Вторинна хмара НХР - це хмара НХР, яка виникає протягом певного часу внаслідок випарювання НХР із підстильної поверхні (для легко летючих речовин час розвитку вторинної хмари після закінчення дії первинної хмари відсутній, для інших речовин він залежить від властивостей НХР, стану обвалування та температури повітря).

Методика прогнозування та оцінка хімічної обстановки заснована на тому, що при руйнуванні ємності, в якій зберігається НХР у рідкому чи газоподібному стані, утворюється первинна і/або вторинна хмара, за якими визначається сумарна глибина прогнозованої зони хімічного забруднення, Гпзхз.

Параметри зони хімічного забруднення залежать від кількості НХР, що перейшла в первинну і/або вторинну хмару, умов зберігання НХР (ємності обваловані, не обваловані), метеоумов, характеру місцевості та ін.

При "вільному" виливі НХР висота шару (h) вважається такою, що не перевищує 0,05 м, при виливі "у піддон" (обваловану місцевість) висота шару приймається h = Н - 0,2 м, де Н – висота обвалування, м.

Прогнозування й оцінка хімічної обстановки під час аварій на хімічно небезпечних об’єктах (ХНО) і транспорті (автомобільному, річковому, залізничному, трубопровідному, морському) здійснюються для визначення можливих наслідків аварій, порядку дій у зоні можливого забруднення й уживання заходів для захисту людей (аварійне прогнозування), а також для визначення ступеня хімічної небезпеки об’єктів, які зберігають або використовують НХР, і адміністративно-територіальних одиниць (АТО), в межах яких живе населення, яке може бути уражене НХР (довгострокове прогнозування) .

Аварійне прогнозування здійснюється під час виникнення аварії за даними розвідки для визначення можливих наслідків аварії і порядку дій в зоні можливого забруднення.

Вихідними даними при аварійному прогнозуванні є:

- тип і кількість НХР на об’єкті Q, т;

- умови зберігання НХР: у ємностях (обваловані, не обваловані), трубопроводах;

- висота обвалування ємності Н, м;

- метеоумови: напрямок (азимут А) і швидкість вітру (V, м/с), температура повітря (°С) ступінь вертикальної стійкості повітря (СВСП): інверсія, ізотермія, конвекція (визначається за часом доби (ніч, день) і хмарністю);

- характер місцевості: відкрита, закрита (довжина забудови, лісового масиву, км);

- кількість людей на об’єкті (у населеному пункті), що може опинитися в зоні можливого забруднення;

- забезпеченість населення засобами захисту, %.

Визначаються:

1. Глибина прогнозованої зони хімічного забруднення, Гпзхз, км.

2. Ширина прогнозованої зони хімічного забруднення, Шпзхз, км.

3. Площа прогнозованої зони забруднення, Sпзхз, км2.

4. Площа зони можливого хімічного забруднення Sзмхз, км2.

5. Час підходу хмари зараженого повітря до заданого об’єкта (населеного пункту), tпідх, год (хв).

6. Час уражаючої дії фактора забруднення НХР, typ, год.

7. Можливі втрати людей в осередку хімічного ураження, В, осіб.

Прогнозування й оцінка хімічної обстановки здійснюється з використанням таблиць і розрахунків. Усі розрахунки виконуються на термін не більше 4 годин після початку аварії (t = 4 год) - тривалість збереження сталих метеоумов. Після цього прогноз має бути уточненим.

 

2. Оцінка хімічного становища при аваріях на хімічно-небезпечних об’єктах.

 

2.1. Визначення розмірів (глибини, ширини та площі) зони хімічного

забруднення.

1. Визначити ступінь вертикальної стійкості атмосфери таб. 3.40

2. Глибина прогнозованої зони розповсюдження хмари зараженого повітря з уражаючими концентраціями (Гпзхз, км) визначається розрахунком за формулою:

 

Гр = Гт/Ксх - Гзм, (3.1)

 

де: Гт - табличне значення глибини зони, визначене за табл. 3.24.-3.34. для умов: місцевість відкрита, ємності НХР не обваловані ("вільний" розлив).

Вихідними даними до таблиць є: тип НХР, кількість викинутої при аварії НХР Q, т; ступінь вертикальної стійкості повітря (СВСП), температура повітря оС, швидкість вітру V, м/с.

Ксх - коефіцієнт, що враховує тип сховища НХР і характеризує зменшення глибини розповсюдження хмари НХР при виливі "у піддон" (при умові зберігання НХР в обвалованих ємностях) за табл. 3.18. з урахуванням висоти обвалування Н, м. Для не обвалованої ємності Ксх = 1.

Гзм - величина, на яку зменшується глибина розповсюдження хмари НХР на закритій місцевості (міська, сільська забудова, лісовий масив), км, визначається за формулою:

 

Гзм = L ·(1 - 1/Кзм) (3.2)

 

де L - довжина закритої місцевості на осі сліду хмари НХР, км, у межах глибини, на яку розповсюдилась би хмара на відкритій місцевості;

Кзм - коефіцієнт зменшення глибини розповсюдження хмари НХР для кожного 1 км довжини закритої місцевості за табл. 3.20.

Після визначення розрахункової глибини отримане значення Гр порівнюється з максимальним значенням глибини переносу повітряних мас Гп за 4 години: Гп = 4 W, км;

де W - швидкість переносу повітряних мас (табл. 3.19.) при заданій швидкості вітру і СВСП, км/год.

Найменше з порівняних величин приймається за фактичну прогнозовану глибину зони забруднення, тобто Гпзхз = min{Гп; Гр}.

 

3. Ширина прогнозованої зони хімічного забруднення (Шпзхз)

Залежно від СВСП її ширина (друга вісь еліпса) розраховується за формулами:

при інверсії Шпзхз = 0,3 Гпзхз0,6 , км;

при ізотермії Шпзхз = 0,3 Гпзхз0,75, км;

при конвекції Шпзхз = 0,3 Гпзхз0,95 , км:

де Гпзхз - глибина прогнозованої зони хімічного забруднення, що визначена в п. 1.1.

4. Площа зони хімічного забруднення

При прогнозуванні визначаються:

а) Площа зони можливого хімічного забруднення (ЗМХЗ).

Розмір ЗМХЗ приймається як сектор круга, форма й розмір якого залежать від швидкості та напрямку вітру (табл. 3.22.) і довжини прогнозованої зони хімічного забруднення Гпзхз. Площа ЗМХЗ розраховується за емпіричною формулою

 

Sзмхз = 8,72 · 10-3 ·Г2 пзхз·Ф км2, (3.3)

 

де Φ (град.) – кутові розміри сектора круга ПЗХЗ, що визначаються з табл. 3.22.

б) Площа прогнозованої зони хімічного забруднення (ПЗХЗ) розраховується за формулою

 

Sпзхз = К·Г2пзхз ·N0,2 км2, (3.4)

 

де К – коефіцієнт, що залежить від СВСП (табл. 3.21.);

N – час, на який розраховується глибина ПЗХЗ (N = 4 год.)

5. Визначення часу підходу хмари зараженого повітря до об’єкта (tпідх).

Час підходу хмари НХР до заданого об’єкта залежить від швидкості перенесення хмари повітряним потоком W, на що впливає швидкість вітру, і визначається за формулою:

 

t підх = RO/W, год, (3.5)

 

де RO - відстань від місця аварії (джерела забруднення) до заданого об’єкта, км;

W - швидкість перенесення переднього фронту забрудненого повітря, визначається за табл. 3.19. (швидкість вітру на висоті хмари більша, ніж біля поверхні землі).

6. Визначення тривалості дії фактора хімічного забруднення (typ).

Тривалість дії НХР визначається терміном випаровування НХР із поверхні її розливу, що залежить від характеру розливу ("вільно" чи "у піддон"), швидкості вітру, типу НХР і може бути визначена за табл. 3.35.

7. Визначення можливих втрат робітників і службовців об’єктів господарювання й населення в осередку хімічного ураження.

Очікувані втрати визначаються за табл. 3.23. залежно від чисельності людей, що можуть опинитись у прогнозованій зоні хімічного забруднення, ступеня їх захищеності (забезпеченості засобами індивідуального й колективного захисту).Результати розрахунків щодо оцінки хімічної обстановки необхідно звести до підсумкової таблиці (Додаток 4).

На карту наносяться межі прогнозованої зони забруднення, аналізуються результати і робляться висновки та пропозиції щодо захисту працівників об’єкта господарювання (населеного пункту), який може опинитись у зоні хімічного забруднення. Район аварії обмежується колом діаметром До, значення якого залежить від кількості НХР, умов зберігання, стійкості повітря та орієнтовно становить четверту частку ширини зони забруднення (Рисунок 3.1.)


 

 

Рисунок 3.1. Нанесення зон хімічного забруднення на карту або схему.

Зразок нанесення межі прогнозованої зони забруднення на карту в РГР показано в Додатку 2, Рисунок 3.1.

 

Результати оцінки хімічної обстановки

У висновках з оцінки ХО відзначається:

1.Чи може опинитись об’єкт у зоні хімічного забруднення (опиниться, якщо RO<Гпзхз, а напрямок вітру збігається з напрямком на об’єкт господарювання щодо ХНО).

2.Можливі наслідки в осередку хімічного ураження (можливі ураження виробничого персоналу i населення та очікувані втрати).

3.Визначається вплив НХР на виробництво, матеріали та сировину.

4.Заходи щодо захисту людей (оповіщення, використання засобів індивідуального захисту (ЗІЗ), будівель і захисних споруд (ЗС), евакуація).

5.Визначаються можливості герметизації виробничих будівель та інших приміщень, де працюють люди, а також можливість продовжувати виробничий процес у засобах індивідуального захисту.

 

Прогнозована зона хімічного забруднення (ПЗХЗ), що має форму еліпса включається у зону можливого забруднення. На топографічних картах і схемах зона можливого забруднення має вигляд (мал. 3.2.):

Рисунок 3.2. Кутові розміри зон можливого забруднення.

а) при швидкості вітру за прогнозом < 0,5 м/с зона забруднення має вигляд кола:

- точка 0 відповідає джерелу забруднення;

- Φ=360°;

- радіус кола рівний Гпзхз.

б) при швидкості за прогнозом від 0,6 до 1 м/с зона має вигляд півкола:

- точка 0 відповідає джерелу забруднення;

 

- Φ=180°;

- радіус півкола рівний Гпзхз;

- бісектриса кола співпадає з віссю сліду хмари й орієнтована за напрямом вітру.

в) при швидкості вітру за прогнозом > 1 м/с зона має вигляд сектора:

- точка 0 відповідає джерелу забруднення;

г) Φ=90° при швидкості вітру за прогнозом від 1,1 до 2 м/с і Φ=45° при швидкості вітру за прогнозом > 2 м/с;

- радіус сектора рівний Гпзхз;

- бісектриса сектора співпадає з віссю сліду хмари й орієнтована за напрямом вітру.

Порядок нанесення зон забруднення на карту або схему наступний:

На координатах позначають центр аварії і наносять площу району аварії (суцільною лінією) діаметром До приблизно рівним ¼ Шпзхз.

Біля кола роблять пояснюючий напис (у чисельнику - вид НХР і кількість, а у знаменнику - час, дата розливу).

Від центру аварії в орієнтованому напрямку вітру проводять вісь прогнозованої зони забруднення.

Наносять зону можливого забруднення радіусом рівним Гпзхз формою, що визначається швидкістю вітру (значенням Φ) (пунктирними лініями).

Знаючи довжину і максимальну ширину (Гпзхз і Шпзхз) еліпса зони прогнозованого забруднення, будують його на карті або схемі (суцільною лінією) і заштриховують.

На отриманій карті або схемі роблять пояснюючі написи. У верхній лівій частині карти чи схеми вказують метеоумови.

Для прикладу на Рисунку 3.1. зображено нанесення зон хімічного забруднення при швидкості вітру 3 м/с, азимуті вітру А=270°, Φ=45°.

ЗМХЗ – зона можливого хімічного забруднення;

ПЗХЗ – прогнозована зона хімічного забруднення;

Гпзхз - глибина прогнозованої зони хімічного забруднення;

Шпзхз –ширина прогнозованої зони хімічного забруднення;

Гпзхз - повна глибина зони можливого забруднення;

До – діаметр зони аварії.

Cпосіб визначення напрямку вітру по заданому азимуту демонструється на Рисунку 3.3.

Рисунок 3.3. Можливі напрями вітру (азимути)

 

 

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

 

1. Желібо Є.П., Заверуха Н.М., Зацарний В.В. Безпека життєдіяльності: Навч. посіб./ За ред. Є.П. Желібо і В.М. Пічі. - Київ «Каравела»; Львів «Новий Світ-2000», 2011.-334с.

2. Н.Пістун І.П. Безпека життєдіяльності: Навчальний посібник. - 2-ге вид. - Су­ми: ВТД «Університетська книга», 2004. - 301с.

3. НРБУ-97 Норми радіаційної безпеки України. Державні нормативи.Безпека об'єктів будівництва. - К.: Основа, 2003. - 208с.

4. Васійчук В.О., Гончарук В.Є., Качан С.І., Мохняк С.М. Основи цивільного захисту: Навч. посібник / В.О. Васійчук, В.Є Гончарук, С.І. Качан, С.М. Мохняк.-Львів:Видавництво Національного університету "Львівська політехніка", 2010.-417с.

5. ДБН В. 1.4 - 1.01 - 97 Система норм та правил зниження рівня іонізуючих випромінювань природних радіонуклідів в будівництві. Регламентовані ра­діаційні параметри. Допустимі рівні.

6. ДБН В. 1.4 - 2.01 - 97 Система норм та правил зниження рівня іонізуючих випромінювань природних радіонуклідів в будівництві. Радіаційний конт­роль будівельних матеріалів та об'єктів будівництва.

7. ДБН В.2.2 - 5 - 97 Будинки і споруди. Захисні споруди цивільної оборони.

8. СаНиП 2152 - 80 Санитарно-гігієничні норми допустимих рівнів іонізації повітря виробничих та громадських приміщень.

9. Стеблюк М.І. Цивільна оборона: Підручник. - 3-тє вид., перероб. і доп. - К.: Знання, 2004. - 490с.

10. Методичні вказівки до виконання розрахунково-графічної роботи на тему « Прогнозування радіаційної ситуації після аварії на атомній електростанції» з курсу «Безпека життєдіяльності»,ОДАБА, 2012р, 28 с.

Додаток1

Таблиця Б.1.

Категорії стійкості атмосфери.

 

Швидкість вітру на висоті 10м ν 10, м/с   Час доби та наявність хмарності
День Ніч
відсутня середня суцільна відсутня суцільна
ν 10 <2 А А А А А
2< ν 10 <3 А А Д Г Г
3 < ν 10 < 5 А Д Д д Г
5< ν 10 <6 д Д Д д Д
ν 10 > 6 д Д Д д Д

Примітка. А - дуже нестійка (конвекція); Д - нейтральна (ізотермія); Г - дуже стійка (інверсія).

Таблиця Б.2.

Розміри прогнозованих зон радіоактивного забруднення місцевості за слідом хмари після аварії на АЕС (категорія стійкості А, швидкість вітру 2 м/с).

 

Вихід активності, %   Індекс зони Реактор
    РВБК-1000 ВВЕР-1000
    Довжина, км Ширина, км Довжина, км Ширина, км
м 62,5 12,1 82,5 16,2
А 14,1 2,7 2,2
М 29,9 40,2
А 5,9 39,4 6,8
Б 6,8 0,8 - -
М 61,8 82,9
А 62,6 12,1 82,8 15,4
Б 13,9 2,7 17,1 2,5
В 6,9 0,8 - -
М 81,8
А 88,3 18,1 24,6
Б 18,3 3,6 20,4 3,7
В 9,21 1,5 8,8 1,07

Примітка. Відсутність даних про розміри зон радіоактивного забруднення сві­дчить про те, що зони не утворюються.

Таблиця Б.3.

Середня швидкість вітру ν сер у шарі від поверхні землі до висоти переміщення центру хмари, м/с.

 

Категорія стійкості атмосфери     Швидкість вітру на висоті 10 м ν 10, м/с
менше 2 понад 6
А
д
г

Таблиця Б.4. Розміри прогнозованих зон радіоактивного забруднення місцевості за слідом хмари після аварії на АЕС (категорія стійкості Д, швидкість вітру 5 м/с).

 

Вихід активності, %   Індекс зони   Реактор
РВБК-1000 ВВЕР-1000
Довжина, км Ширина, км Довжина, км Ширина, км
м 145,0 8,4 74,5 3,7
А 34,1 1,7 9,9 0,2
М 270,0 18,2 155,0 8,7
А 75,0 3,9 29,5 1,1
Б 17,4 0,6
В 5,8 0,1
М 418,0 31,5 284,0 18,4
А 145,0 8,4 74,5 3,5
Б 33,7 1,7 9,9 0,2
В 17,6 0,6
М 583,0 42,8 379,0 25,3
А 191,0 11,7 100,0 5,2
Б 47,1 2,4 16,6 0,6
В 23,7 1,1
Г 9,4 0,2

Примітки. У тих випадках, коли потужність дози на забрудненій місцевості виміряти неможливо, частка викинутих радіоактивних речовин приймається h = 10%.


Таблиця Б.5.

Розміри прогнозованих зон радіоактивного забруднення місцевості за слідом хмари при аварії на АЕС (категорія стійкості Г).

 

Вихід активності, %   Індекс зони   Реактор
РВБК-1000 ВВЕР-1000
Довжина, км Ширина, км Довжина, км Ширина, км
Швидкість вітру 5 м/с
м 3,6 0,6
М 7,8 2,6
А 1,7 - -
М 5,1
А 3,6 0,6
М 6,9
А 4,9 1,5
Б 0,4 - -
Швидкість вітру 10 м/с
М 1,9
А 5,2 0,07
М ПО 5,3
А 2,4 0,6
Б 0,3 - -
М
А 1,9
Б 0,07
В 0,3 - -
М
А 1,5 0,3
Б 0,6 - -

Таблиця Б.6.

Потужність дози випромінення на осі сліду (вихід радіоактивних речовин 10 %, час - 1 год після зупинки реактора).

 

Відстань від АЕС, км     Категорія стійкості атмосфери
А Д Г
Середня швидкість вітру, м/с
Реактор РВБК-1000
1,89 4,5 2,67 0,00002 0,00001
0,64 2,62 1,60 0,02 0,013
0,12 0,54 0,35 0,30 0,21
0,06 0,25 0,17 0,24 0,18
0,03 0,15 0,11 0,13 0,11
0,02 0,08 0,06 0,07 0,06
0,007 0,02 0,02 0,02 0,02
0,002 0,01 0,01 0,009 0,009
0,001 0,005 0,006 0,005 0,005
Реактор ВВЕР-1000
1,24 0,80 0,47 0,004 0,0024
0,72 0,46 0,28 0,003 0,024
0,17 0,12 0,08 0,05 0,038
0,09 0,07 0,05 0,04 0,025
0,05 0,04 0,03 0,02 0,016
0,03 0,02 0,02 0,01 0,001
0,01 0,008 0,007 0,003 0,003
0,005 0,004 0,004 0,0017 0,0017
0,003 0,002 0,002 0,001 0,001

 


Таблиця Б.7.

Дози опромінення, одержувані людьми при відкритому розміщенні в середині зони забруднення, рад.

 

Час початку опромінення   Тривалість перебування у зоні забруднення
Години Доби Місяці
Години Зона М
0,04 0,10 0,21 0,33 0,45 0,55 1,18 1,64 2,51 4,70 11,5 Г15,8
0,03 0,09 0,20 0,31 0,42 0,53 1,15 1,61 2,48 4,67 11,5 15,8
0,02 0,07 0,16 0,26 0,37 0,47 1,07 1,52 2,38 4,55 11,4 15,6
0,02 0,06 0,13 0,22 0,32 0,41 0,98 1,42 2,27 4,43 11,2 15,5
Доби  
0,01 0,04 0,11 0,18 0,27 0,35 0,87 1,29 2,11 4,24 6,29 Г51,3
0,01 0,03 0,08 0,14 0,21 0,28 0,74 1,13 1,90 3,98 10,30 14,9
Години Зона А
0,46 1,08 2,18 3,32 4,51 5,56 11,8 16,4 25,1 47,6
0,35 0,97 1,02 3,13 4,28 6,32 11,5 16,1 24,8 46,7
0,26 0,76 1,66 2,66 3,73 4,70 10,7 15,2 23,8 45,5
0,21 0,62 1,39 2,28 3,25 4,15 9,88 14,2 22,7 44,3
Доби  
0,16 0,49 1,12 1,87 2,71 3,51 8,79 12,9 21,1 42,4
0,12 0,38 0,67 1,47 2,16 2,83 7,47 11,3 19,0 39,8

Примітки.

1. Дози опромінення на внутрішній зоні приблизно у 3,2 рази більші наведених у таблиці.

2. Для визначення за допомогою таблиці часу початку (tпоч.) чи тривалості пере­бування (Т) у зоні необхідно задану дозу опромінення поділити на 3,2 - при пе­ребуванні людей на внутрішній межі зони, або помножити на 3,2 - при перебу­ванні їх на зовнішній межі зони.


Таблиця Б.8.

Дози опромінення, одержувані людьми при відкритому розміщенні в середині зони забруднення, рад.

 

Час початку опромінення піс­ля аварії   Тривалість перебування у зоні забруднення
Години Доби Місяці
Години Зона Б
2,23 5,93 11,9 18,2 24,7 30,4 64,9 90,1
1,94 5,34 11,0 17,1 23,4 29,1 63,2 84,4
1,46 4,19 9,11 14,5 20,4 25,7 58,7 83,4
Доби  
0,91 2,72 6,17 10,2 14,8 19,2 48,1 71,0
0,70 2,09 4,80 8,08 11,8 15,5 40,9 61,9
Години Зона В
7,05 18,5 37,8 57,6 78,1 96,3
6,14 16,9 35,0 54,2 74,2 92,1
4,61 13,2 28,8 46,1 64,6 81,5
Доби  
2,91 8,60 19,5 32,4 47,0 60,8
2,22 6,62 15,2 25,5 37,5 49,0
Години ЗонаГ
23,1 61,7
20,1 55,5
15,1 43,6 94,7
Доби  
9,57 28,2 64,1
7,31 21,7 49,9 84,0

Примітки. 1. Дози опромінення на внутрішній межі зони приблизно в 1,8 раза більші наведених у таблиці.

2. Для визначення за допомогою таблиці часу початку (tпоч) або тривалості пере­бування (Т) у зоні необхідно задану дозу опромінення поділити на 1,8 - при знаходженні людей на внутрішній межі зони, або перемножити на 1,8 - при пе­ребуванні їх на зовнішній межі зони.


Таблиця Б.9.

Час початку формування сліду (tпоч) після аварії на АЕС, год.

 

Відстань від АЕС, км     Категорія стійкості атмосфери
А Д Г
Середня швидкість вітру, м/с
0,5 0,3 0,1 0,3 0,1
1,0 0,5 0,3 0,5 0,3
3,0 1,5 0,8 1,5 0,8
5,0 2,5 1,2 2,5 1,3
7,5 4,0 2,0 4,0 2,0
9,5 5,0 2,5 5,0 3,0
19,0 10,0 5,0 10,0 5,0
28,0 15,0 7,5 16,0 8,0
37,0 19,0 10,0 21,0 11,0

 

Таблиця Б. 10.

Середні значення коефіцієнта ослаблення дози радіації Кпосл.

 

Найменування укриттів і транспортних засобів Кпосл
Відкрите розташування на місцевості
Захисні спорудження
Заражені відкриті окопи, щілини
Дезактивовані або відкриті на зараженій місцевості окопи
Протирадіаційні укриття (ПРУ) 100 і більше
Транспортні засоби
Автомобілі і автобуси
Криті вагони
Пасажирські вагони (локомотиви)
Промислові і адміністративні будинки
Виробничі одноповерхові будинки (цех)
Виробничі і адміністративні триповерхові будинки
Житлові кам'яні будинки
Одноповерхові
Підвал
Двоповерхові
Підвал
П'ятиповерхові
Підвал
Житлові дерев'яні будинки
Одноповерхові
Підвал
Двоповерхові
Підвал

Додаток2

 

 

 

Рисунок 1.1. Зразок нанесення зон радіоактивного забруднення території на карту або план місцевості при аварії на ОГД.

 

 

 

Рисунок 1.2. Графік для визначення можливих доз опромінення в середині зони , в якій знаходиться ОГД.

 

 

 

Рисунок 1.3. Графік залежності дози опромінення отриманої робітниками ОНГ на відкритій місцевості від відстані до РНО.

 

Рисунок 3. 4. Нанесення зон хімічного забруднення на карту або схему.


Додаток 3

Таблиця 3.18.

Коефіцієнти зменшення глибини розповсюдження хмари НХР при виливі

"у піддон"

Найменування НХР Висота обвалування, м
хлор 2,1 2,4 2,5
аміак 2,0 2,25 2,35
сірчаний ангідрид 2,5 3,0 3,1
сірководень 1,6 - -
соляна кислота 4,6 7,4 10,0
хлорпікрин 5,3 8,8 11,6
формальдегід 2,1 2,3 2,5

Примітки:

Якщо приміщення, де зберігається НХР, герметично зачиняються і обладнані спеціальними вловлювачами, то відповідний коефіцієнт збільшується в 3 рази.

У разі проміжних значень висоти обвалування існуюче значення висоти обвалування округляється до ближчого.

 

Таблиця 3.19.

Швидкість переносу переднього фронту хмари забрудненого повітря залежно від швидкості вітру та СВСП

Швидкість повітря, м/с
Швидкість переносу переднього фронту хмари забрудненого повітря, км/год
ІНВЕРСІЯ
           
ІЗОТЕРМІЯ
КОНВЕКЦІЯ
           

 


 

 

Таблиця 3.20.

В умовах міської забудови, сільського будівництва або лісів глибина розповсюдження хмари забрудненого повітря для кожного 1 км цих зон зменшується на відповідні коефіцієнти:

СВСП Міська забудова Лісові масиви Сільське будівництво
Інверсія 3,5 1,8
Ізотермія 1,7 2,5
Конвекція 1,5

 

Таблиця 3.21.

Коефіцієнт (К8), який залежить від ступеня вертикальної стійкості повітря (СВСП)

Інверсія Ізотермія Конвекція
0,081 0,133 0,235

 

Таблиця 3.22.

Коефіцієнт Ф, який залежить від швидкості вітру (м/с)

V, м/с <0,5 >2
Ф

 

Таблиця 3.23.

Можливі втрати населення, робітників та службовців, які опинилися у ЗМХЗ (ПЗХЗ), %

Умови перебу-вання людей Без протигазів Забезпеченість людей протигазами, %
На відкритій місцевості, у будівлях 90-100

Примітка: Орієнтовно структура втрат може розподілятися за такими даними: легкі - до 25%; середньої тяжкості - до 40%; зі смертельними наслідками - до 35%.

 

 

Таблиця 3.24

 


Таблиця 3.25

 

 

Таблиця 3.26


Таблиця 3.27.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.