Пиши Дома Нужные Работы

Обратная связь

О ЯВЛЕНИЯХ, ПРОИЗВОДИМЫХ ЭЛЕКТРОСТАТИЧЕСКОЙ СИЛОЙ.


Первый класс эффектов, которые я собираюсь показывать Вам — это эффекты, производимые электростатической силой. Это сила, которая управляет движением атомов, обуславливает их столкновения и порождает энергию тепла и света.
Эта сила также служит причиной агрегации атомов бесконечным количеством способов, в соответствии с фантастическими проектами Природы, и образует все те изумительные структуры, которые мы видим вокруг себя.
Если наши нынешние представления верны, то это наиболее важная для нас сила в Природе. Как термин, электростатика может подразумевать устойчивое электрическое состояние, но нужно заметить, что в наших экспериментах эта сила не постоянна, она изменяется с частотой, которую можно рассматривать как умеренную — миллион раз в секунду, или около того.
Это позволяет мне воспроизвести множество эффектов, которые с силой постоянной величины произвести невозможно.
Когда два токопроводящих тела изолированы и заряжены, мы говорим, что между ними действует электростатическая сила. Эта сила проявляет себя в притяжении, отталкивании и напряжении, возникающих в телах, пространстве, или внешней среде.
Напряжение в воздухе, или в другой среде, разделяющей два токопроводящих тела, может быть настолько велико, что может произойти прорыв, и тогда мы видим искры, пучки света, или, как их иначе называют, стримеры.

Эти стримеры образуются в большом количестве, когда сила, протекающая через воздух, быстро изменяется. Я наглядно покажу действие этой электростатической силы в новейшем эксперименте, в котором я использую индукционную катушку, о которой я уже говорил ранее.
Катушка размещается в контейнере, заполненном маслом, и устанавливается под столом. Два конца провода вторичной обмотки проходят через две толстых столбика из прочной резины, которые выдаются на некоторую высоту над уровнем стола.
Концы или клеммы вторично обмотки необходимо хорошо заизолировать с помощью прочной резины, поскольку даже сухое дерево является плохим изолятором для тока с огромной разностью потенциалов. На одной из клемм катушки я разместил большую сферу, сделанную из листа латуни, которую подсоединил к большой изолированной латунной пластине.
Это позволило мне выполнять эксперимент при условиях, которые, как вы увидите, наиболее подходят для этого эксперимента. Затем я привел катушку в действие и приблизил свободную клемму к металлическому предмету, находящемуся в моей руке, так, чтобы не получить ожогов. Когда я приблизил металлический предмет на расстояние в восемь или десять дюймов, стремительный поток искр вырвался с конца провода вторичной обмотки, который проходил через резиновую трубку.



Искрение прекращалось, когда металл в моей руке соприкасался с проводом. Теперь моя рука находилась под действием сильного электрического тока с колебаниями около одного миллиона раз в секунду.
Все вокруг меня заполнилось электростатической силой, молекулы воздуха и частицы пыли подверглись этому воздействию и сильно бились о мое тело. Возбуждение частиц было таким сильным, что когда выключили свет, можно было увидеть потоки слабого света, появившиеся на некоторых частях моего тела.
Когда такой стример вспыхивает на какой либо части тела, он вызывает ощущение, подобное уколу иглы. Когда разность потенциалов достаточно велика, а частота колебаний, наоборот, мала, то кожа может получить серьезные ;. повреждения от воздействия огромного напряжения.
Кровь с большой силой будет хлестать наружу в виде тонкой струи или брызг, настолько малых, что они будут невидимы, точно также как масло, находящееся на положительной клемме машины Гольца.

Разрыв кожи, хотя это рис.5 и может показаться невозможным сначала, вполне возможен, так как ткани, расположенные под поверхностью кожи, являются несравнимо лучшими проводниками, чем сама кожа. По крайней мере, это кажется правдоподобным, исходя из некоторых наблюдений.
Я могу сделать эти потоки света видимыми для всех, если прикоснусь металлическим предметом к одной из клемм и приближу мою свободную руку к латунной сфере, которая подсоединена ко второй клемме катушки. Когда рука приближается, воздух между ней и сферой возбуждается сильнее, и вы видите потоки света, исходящие с кончиков моих пальцев и с руки в целом (рис.5).
Если бы я еще ближе поднес руку, то к ней слетали бы сильные искры со сферы, и это могло бы быть опасным. Стримеры не доставляют никакого неудобства, за исключением того, что кончики пальцев чувствуют сильное тепло.
Эти стримеры не следует сравнивать с теми, которые вырабатываются электрофорным генератором, так как во многих отношениях их поведение различно.
Я подсоединил латунную сферу и пластину к одной из клемм для того, чтобы предотвратить образование видимых стримеров на клемме, а также для того, чтобы предотвратить распространение искр на значительное расстояние. Кроме того, такой контакт благоприятно сказывается на работе катушки.
Потоки света, испускание которых с моих рук вы наблюдаете, обусловлено разностью потенциалов величиной около 200 000 вольт, изменяющейся довольно нерегулярно, иногда до миллиона раз в секунду.

Для того чтобы окружить пеленой света все мое тело потребуются колебания такой же амплитуды, но скорость их должна быть в четыре раза больше. Для этого требуется напряжение более 3 000 000 вольт.
Но это пламя не должно меня обжигать, совсем наоборот, вероятность повреждения уменьшается.
Даже сотой части такой энергии, направленной по-другому, достаточно, чтобы убить человека.
Величина энергии, которая таким образом может проходить через тело человека, зависит от частоты и потенциала тока. Делая оба этих показателя очень большими, можно пропускать через тело человека огромное количество энергии без малейшего для него дискомфорта, за исключением, возможно, руки, по которой движется ток.
Причиной того, что тело не испытывает боль и ему не причиняется вред, является то, что повсюду, где ток протекает через тело, его поток направлен под прямым углом к поверхности тела.
Поэтому тело экспериментатора является огромным рассекателем потока и его плотность очень мала, за исключением руки, где плотность может быть значительной.
Но если только небольшая часть энергии будет направлена так, что ток будет проходить через тело так, как при низкой частоте, полученный удар может быть смертельным.

Я думаю, что постоянный или низкочастотный переменный ток в принципе опасен из-за того, что его распределение через тело непостоянно. Он должен разделяться на мельчайшие ручейки с большой плотностью, из-за чего повреждаются жизненно важные органы.
Не сомневаюсь, что такой процесс происходит, хотя никаких подтверждений не было обнаружено при проведении эксперимента. Постоянный ток причиняет повреждения, но еще более болезненным является переменный ток с очень низкой частотой.
Основанием выразить это мнение, которое родилось в результате длительного эксперимента и наблюдений постоянного и переменного токов, явился явный интерес к этому предмету, выражающийся в ошибочных идеях, ежедневно выдвигаемых в журналах по этому вопросу.
Я могу проиллюстрировать эффект электростатической силы при помощи другого замечательного эксперимента, но перед этим я должен привлечь ваше внимание к одному или двум фактам. Ранее я сказал, что когда среда между двумя электростатически заряженными телами напряжена до определенного предела, то это вызывает действие, или, говоря популярным языком, противоположные электрические заряды объединяются и нейтрализуют друг друга.

Это разрушение среды всегда происходит, когда сила, действующая между телами, постоянна или варьируется с умеренной скоростью. Если же изменения скорости существенно больше, то такое деструктивное действие не происходит вне зависимости от того, насколько велика эта сила.
Вся энергия расходуется на излучение, конвекцию, механическое или химическое действие. Таким образом, длина искры, или наибольшее расстояние, на котором может возникнуть искра между электростатически заряженными телами является тем меньше, чем больше изменения скорости заряда.
Но это правило может быть истинно только для обычных случаев, когда сравниваемые скорости варьируются в широком диапазоне.
Я экспериментально покажу вам различие в эффектах, получаемых при быстром изменении силы, при постоянной силе, или при умеренном изменении силы. У меня есть две большие латунные пластины р р, согнутые в кольца(рис.6а и рис.6b), которые закреплены в передвижных изолирующих держателях, стоящих на столе.
Пластины присоединены к концам вторичной обмотки катушки, похожей на ту, что использовалась ранее.

Я разместил пластины на расстоянии в десять или двенадцать дюймов друг от друга и включил катушку. Я увидел, что пространство между пластинами размером около двух кубических футов заполнилось ровным светом, рис.6а.
Этот свет обусловлен стримерами, которые вы могли видеть в первом эксперименте, но теперь он был более интенсивным. Я уже акцентировал внимание на важности стримеров в коммерческих приборах, но они очень важны и в чисто научных исследованиях.
Часто их плохо видно, но они всегда есть, они поглощают энергию и изменяют действие приборов. Когда стримеры интенсивны, как сейчас, они в больших количествах производят озон и, кроме того, как отметил профессор Крукс, азотистую кислоту.
Это химическая реакция такая быстрая, что когда работает катушка, такая как в нашем случае, то в скором времени атмосфера в маленькой комнате становится невыносимой из-за вредного воздействия на глаза и горло.

Но при умеренном воздействии стримеры замечательно освежают атмосферу подобно грозе, и опыты, бесспорно, оказывают благоприятное действие.
В этом эксперименте сила, действующая между пластинами, изменяется по интенсивности и с очень большой скоростью. Теперь я сделаю скорость изменения в единицу времени значительно меньше. Этого эффекта я достигаю, пропуская разряд через первичную обмотку индукционной катушки с меньшей частотой, а также уменьшая скорость колебаний во вторичной обмотке.
Первый результат достигается путем уменьшения ЭДС в воздушном пространстве первичной цепи, а второй, путем сближения двух латунных пластин на расстояния около трех или четырех дюймов. Когда катушка работает, вы уже не видите стримеры или свет между пластинами, хотя среда между ними находится под огромным напряжением.
Я продолжу увеличивать напряжение, повышая ЭДС в первичной цепи, и вы увидите, как расходуется воздух и помещение освещается фейерверком блестящих, сухих, шумных искр, рис.6Ь. Эти искры могли быть получены также и при постоянной (не изменяющейся) силе; это явление хорошо знакомо уже многие годы, хотя и получалось при помощи совершенно другого прибора.
При описании этих двух явлений с такими разительными отличиями, я намеренно говорил о силе, действующей между пластинами. В соответствии с общепринятой точкой зрения было бы правильным сказать, что это была переменная ЭДС, действующая между пластинами. Этот термин совершенно правилен и применим во всех случаях, когда очевидна, по крайней мере, возможность зависимости между электрическими состояниями пластин или электрическое действие возникает из-за их близости друг к другу.
Но если пластины удалены на бесконечное или предельное расстояние друг от друга, то нет ни возможности, ни какой-либо необходимости в такой зависимости. Я предпочитаю использовать термин "электростатическая сила" и говорить, что такая сила действует вокруг каждой пластины, или вообще любого электрически изолированного тела.
Неудобно использовать это выражение как термин для устойчивого электрического состояния, но правильная терминология со временем разрешит этутрудность.


Я теперь возвращаюсь к эксперименту, о котором я уже упомянул и которым я хочу иллюстрировать поразительный эффект, производимый быстро изменяющейся электростатической силой.
Я присоединяю к концу провода,(рис.7), который соединен с одной из клемм вторичной обмотки индукционной катушки, вакуумную лампу b. Эта лампа содержит тонкую углеродную нить накала, которая соединена с платиновой проволокой W, запаянной в стекле. Проволока выходит наружу из лампы и соединяется с проводом.
Вакуум в лампе может быть получен при помощи обычной аппаратуры, и достигать любых значений.
За мгновение до этого вы стали очевидцами распада воздуха между заряженными латунными пластинами. Вы знаете, что стеклянная пластина или любой другой изолирующий материал будут пробиваться похожим образом.

А если взять металлическое покрытие и прикрепить его на внешней стороне лампы, или поблизости от нее, а затем соединить этого покрытия с клеммой катушки, то вы будьте готовы увидеть, как поддается стекло, когда напряжение достигло определенного уровня.
Даже когда покрытие не соединяется с другой клеммой, но контактирует с изолирующей пластиной, тем не менее, вы будете ожидать разламывания стекла. Однако вы с удивлением обнаружите, что под действием изменяющихся электростатических сил стекло не выдерживает, если все другие тела удалены из лампы.
Фактически, мы полагаем, что все окружающие тела, которые мы воспринимаем, могут быть удалены на бесконечное расстояние, и это никак не повлияет на результат.
Когда катушка начинает работать, стекло неизменно дает трещину в области перемычки, или в другом узком месте, и вакуум быстро исчезает. Такое повреждение не должно происходить при действии постоянной силы, даже если она во много раз больше.
Трещина является следствием возбуждения молекул газа в лампе и вне ее. Это возбуждение, которое обычно наиболее сильно в узком, остром месте канала вблизи перемычки, вызывает нагрев и разрыв стекла.
Однако, этот разрыв не будет происходить даже при изменении силы, если среда, заполняющая лампу и наружная среда совершенно однородны. Повреждение происходит значительно быстрее, если верх лампы выведен в тонкое волокно. В лампах, применяемых с этими катушками, такие узкие каналы должны быть удалены.

Когда проводящее тело погружено в воздух или похожую изолирующую среду, содержащую или состоящую из маленьких свободно двигающихся частиц, способных наэлектризовываться, и когда электризация тела происходит с очень большой скоростью (с такой, что справедливо утверждение, что электростатическая сила действует вокруг тела с изменяющейся интенсивностью), то маленькие частицы притягиваются и отталкиваются, и их сильное воздействие на тело может вызвать механическое движение последнего.
Явления этого типа заслуживают внимания, так как они не наблюдались при использовании ранее применяемой аппаратуры. Если очень легкую токопроводящую сферу подвесить на очень тонком проводе и зарядить до постоянной, но большой величины разности потенциалов, то она останется неподвижной.
Даже если разность потенциалов будет сильно изменяться, но при этом распределение маленьких частиц материи, молекул или атомов будет равномерным, то сфера не будет двигаться. Но если одна сторона проводящей сферы будет покрыта толстым изолирующим слоем, то воздействие частиц на сферу приведет к ее движению, как правило, неравномерному. рис.8а.
Подобным способом, как я показал в предыдущем случае, вращается вентилятор из листа металла рис.8b, частично покрытый изолирующим материалом и помещенный на клемму катушки так, что он может поворачиваться. Все эти явления, которые вы наблюдали, и другие, которые вы увидите позже, обусловлены наличием среды, подобной воздуху и не встречаются в плотной среде. Действие воздуха может быть лучше проиллюстрировано следующим экспериментом.

Я беру стеклянную трубку t, рис.9, около одного дюйма в диаметре, в нижнем конце которой имеется платиновый провод w, к которому прикреплена тонкая нить накала f. Я соединяю провод с клеммой катушки и включаю ее.

Теперь платиновый провод заряжается положительно и отрицательно в быстрой последовательности. Провод и воздух в трубке быстро нагреваются под действием частиц, которое может быть настолько сильным, что нить накаливания раскаляется добела. Но если я налью масло в трубку так, чтобы покрыть им провод, действие прекратится, и нагревания не будет заметно. Причина в том, что масло это практически непрерывная среда.
Видимый разряд в такой плотной среде происходит с частотой, несравнимо рис.9. рис.10. меньшей, чем в воздухе, следовательно, работа в такой среде будет незначительной. Но масло должно вести себя иначе при больших частотах, и тогда может быть выполнена значительно большая работа.
Впервые был замечен так называемый электрический феномен, выражающийся в притяжении и отталкивании между соизмеримыми телами, а также другие проявления действия этой силы. Но хотя они были известны нам многие столетия точная природа задействованного здесь механизма все еще остается неизвестной, и даже не получила удовлетворительного объяснения.
Какой тип этого механизма? Мы не скрываем удивления при наблюдении двух магнитов, притягивающихся и отталкивающихся с силой в сотни фунтов при кажущейся пустоте между ними.

В наших коммерческих динамо-машинах магниты способны удерживать в воздухе тонны веса. Но что значат даже эти силы, действующие между магнитами по сравнении огромным притяжением и отталкиванием, производимым электростатической силой, величине интенсивности которой, очевидно, нет предела.
В разряде молнии тела часто заряжаются до такой высокой разности потенциалов, что они отбрасываются с невообразимой силой, рвутся на части или распадаются на фрагменты.
Но даже эти эффекты не сравнятся с притяжением и отталкиванием, существующими между заряженными атомами и молекулами, и которые достаточны для того, чтобы их скорость достигала многих километров в секунду, так что при сильном столкновении тела раскаляются добела и испаряются.
Особенно интересно для мыслителя, который интересуется природой этой силы, будет заметить, что несмотря на то, что действие между отдельными молекулами ли атомами происходит в любых состояниях, притяжение и отталкивание соизмеримых по величине тел предполагает наличие изолирующей среды.
Так, если воздух, разреженный или нагретый, обнаруживает большую или меньшую проводимость, то действие между двумя заряженными телами практически прекращается, в то время как взаимодействие между отдельными атомами продолжает происходить.
Эксперимент может послужить иллюстрацией и средством показать другие интересные детали. Некоторое время назад я показал, что нить накаливания или провод, установленные в лампе и подключенные к одной из клемм вторичной катушки высокого напряжения вращаются, при этом верхняя часть нити накала описывает круг.

Это колебание было очень энергичным, когда воздух в лампочке находился при обычном давлении, и стало менее энергичным, когда воздух в лампочке стал сильно сжат. Оно прекращалось полностью, когда воздух разрежался до такой степени, что приобретал относительно неплохую проводимость. Я установил, что при сильном вакууме в лампе колебаний не происходит. Но я предположил, что колебания, которые я приписал электростатическому действию между стенками лампы и нитью накала, будут иметь место и при сильном разрежении воздуха.
Для того, чтобы проверить это в более благоприятных условиях, была сконструирована лампа, похожая на ту, что изображена рис.10. Она состоит из шара b, на шейке которого закреплена платиновая проволока W, к которой присоединена нить накала f.
В нижней части шара трубка / окружает нить накала. Разрежение воздуха производилось обычно используемыми для этого приборами.
Эта лампа оправдала мое ожидание в том, что нить накала должна вибрировать и раскаляться при включении тока. Она также показала другую интересную особенность, имеющую отношение к предыдущим замечаниям.
А именно: когда нить накала оставалась раскаленной некоторое время, узкая трубка и пространство внутри нее нагревались до высокой температуры. При этом газ в трубке становился токопроводящим, а электростатическое притяжение между стеклом и нитью накала становилось очень слабым, или исчезало совсем, и нить накала успокаивалась.

Когда нить накала успокаивалась, она накалялась еще более сильно. Вероятно, это происходит из-за того, что она занимает положение в центре трубки, где молекулярная бомбардировка была более интенсивна, а также отчасти из-за того, что отдельные столкновения были более сильными, и никакая часть задействованной энергии не преобразовывалась в механическое движение.
Поскольку, в соответствии с общепринятой точкой зрения, в этом эксперименте накаливание должно приписываться воздействию частиц, молекул, или атомов в нагретом пространстве, следовательно, как объяснение данному действию, эти частицы должны вести себя как независимые носители электрического заряда, погруженные в изолирующую среду.
При этом нет силы притяжения между стеклом трубки и нитью накала, так как пространство в трубке, в целом, обладает электропроводностью. В этой связи достаточно интересно наблюдать, как притяжение между двумя заряженными телами может прекратиться по причине ослабления изолирующего действия среды, в которую они погружены, и как между телами может возникнуть отталкивание.
Это можно правдоподобно объяснить. Когда тела находятся на некотором расстоянии друг от друга в плохо проводящей среде, такой как слабо нагретый или разреженный воздух, и они вдруг заряжаются, то к ним передаются противоположные электрические заряды.
Эти заряды более или менее уравниваются благодаря утечке через воздух. Но если тела заряжены одинаково, то у них меньше возможностей для такой утечки, следовательно, отталкивание, наблюдаемое в этом случае, будет сильнее, чем притяжение.
Однако, как показал профессор Крукс, силы отталкивания в газообразной среде усиливаются молекулярной бомбардировкой.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2017 pdnr.ru Все права принадлежат авторам размещенных материалов.