Пиши Дома Нужные Работы

Обратная связь

Зажигание и поддержание сварочной дуги.

Перед зажиганием (возбуждением) дуги следует установить необходимую силу сварочного тока, которая зависит от марки электрода, пространственного положения сварки, типа сварного соединения и др. Зажигать дугу можно двумя способами. При одном способе электрод приближают вертикально к поверхности изделия до касания металла и быстро отводят вверх на необходимую длину дуги. При другом - электродом вскользь "чиркают" по поверхности металла. Применение того или иного способа зажигания дуги зависит от условий сварки и от навыка сварщика.

 

Длина дуги зависит от марки и диаметра электрода, пространственного положения сварки, разделки свариваемых кромок и т- п. Нормальная длина дуги считается в пределах lд = (0.5 - 1.1)*dэл (dэл - диаметр электрода). Увеличение длины дуги снижает качество наплавленного металла шва ввиду его интенсивного окисления и азотирования, увеличивает потери металла на угар и разбрызгивание, уменьшает глубину проплавления основного металла. Также ухудшается внешний вид шва.

 

Во время ведения процесса сварщик обычно перемещает электрод не менее чем в двух направлениях. Во-первых, он подает электрод вдоль его оси в дугу, поддерживая необходимую в зависимости от скорости плавления электрода длину дуги. Во-вторых, перемещает электрод в направлении наплавки или сварки для образования шва. В этом случае образуется узкий валик, ширина которого при наплавке равна примерно (0,8 - 1,5)*dэл и зависит от силы сварочного тока и скорости перемещения дуги по поверхности изделия. Узкие валики обычно накладывают при проваре корня шва, сварке тонких листов и тому подобных случаях.



 

При правильно выбранном диаметре электрода и силе сварочного тока скорость перемещения дуги имеет большое значение для качества шва. При повышенной скорости дуга расплавляет основной металл на малую глубину и возможно образование непроваров. При малой скорости вследствие чрезмерно большого ввода теплоты дуги в основной металл часто образуется прожог, и расплавленный металл вытекает из сварочной ванны. В некоторых случаях, например при сварке на спуск, образование под дугой жидкой прослойки из расплавленного электродного металла повышенной толщины, наоборот, может привести к образованию непроваров.

 

Иногда сварщику приходится перемещать электрод поперек шва, регулируя тем самым распределение теплоты дуги поперек шва для получения требуемых глубины проплавления основного металла и ширины шва. Глубина проплавления основного металла и формирование шва главным образом зависят от вида поперечных колебаний электрода, которые обычно совершают с постоянными частотой и амплитудой относительно оси шва. Траектория движения конца электрода зависит от пространственного положения сварки, разделки кромок и навыков сварщика. При сварке с поперечными колебаниями получают уширенный валик, ширина которого обычно составляет (2 - 4)*dэл, а форма проплавления зависит от траектории поперечных колебаний конца электрода, т. е. от условий ввода теплоты дуги в основной металл.

 

При окончании сварки - обрыве дуги следует правильно заварить кратер. Кратер является зоной с наибольшим количеством вредных примесей ввиду повышенной скорости кристаллизации металла, поэтому в нем наиболее вероятно образование трещин. По окончании сварки не следует обрывать дугу, резко отводя электрод от изделия. Необходимо прекратить все перемещения электрода и медленно удлинять дугу до обрыва; расплавляющийся при этом электродный металл заполнит кратер. При сварке низкоуглеродистой стали кратер иногда выводят в сторону от шва - на основной металл. При случайных обрывах дуги или при смене электродов дугу возбуждают на еще не расплавленном основном металле перед кратером и затем проплавляют металл в кратере.

 

Положение электрода относительно поверхности изделия и пространственное положение сварки оказывают большое влияние

на форму шва и проплавке не основного металла. При сварке углом назад улучшаются условия оттеснения из-под дуги жидкого металла, толщина прослойки которого уменьшается. При этом улучшаются условия теплопередачи от дуги к основному металлу и растет глубина его проплавления. То же наблюдается при сварке шва на подъем на наклонной или вертикальной плоскости. При сварке углом вперед или на спуск расплавленный металл сварочной ванны, подтекая под дугу, ухудшает теплопередачу от нее к основному металлу - глубина проплавления уменьшается, а ширина шва возрастает.

 

При прочих равных условиях количество расплавляемого электродного металла, приходящегося на единицу длины шва, остается постоянным, но распределяется на большую ширину шва и поэтому высота его усиления уменьшается. При наплавке или сварке тонколистового металла (толщина до 3 мм) для уменьшения глубины провара и предупреждения прожогов рекомендуется

15-20" сварку выполнять на спуск (наклон до 15°) или углом вперед без поперечных колебаний электрода. Для сборки изделия под сварку (обеспечения заданного зазора в стыке, положения изделий и др.) можно применять специальные приспособления или короткие швы - прихватки. Длина прихваток обычно составляет 20 - 120 мм (больше при более толстом металле) и расстояние между ними 200-1200 мм (меньше при большей толщине металла для увеличения жесткости). Сечение прихваток не должно превышать 1/3 сечения швов. При сварке прихватки необходимо полностью переплавлять.

 

Длина дуги и напряжение на ней

Рекомендуемая длина дуги равняется диаметру электрода. При слишком длинной дуге металл электрода, плавясь, образует большие шарики (крупнокапельный перенос металла), при этом дуга, часто прерываясь, дает широкий неравномерный и забрызганный сварной шов с недостаточным сплавлением. При слишком короткой дуге выделяется недостаточно тепла для глубокого проплавления основного металла, и происходит частое прилипание электрода к основному металлу.

 

Зависимость напряжения в сварочной дуге от ее длины и величины сварочного тока, называемую вольтамперной характеристикой сварочной дуги, можно описать уравнением Uд =a + bLд, где а — сумма падений напряжения на катоде и аноде (а = Uк+Uа); b — удельное падение напряжения в газовом столбе, отнесенное к 1 мм длины дуги (величина b зависит от газового состава столба дуги); L д — длина дуги, мм.

 

При малых и сверхвысоких величинах тока 1/д зависит от величины сварочного тока.

 

Статическая вольт-амперная характеристика сварочной дуги показана на рис. 34. В области I увеличение тока до 80 А приводит к резкому падению напряжения дуги, которое обусловливается тем, что при маломощных дугах увеличение тока вызывает увеличение площади сечения столба дуги, а также его электропроводности. Форма статической характеристики сварочной дуги на этом участке падающая. Сварочная дуга, имеющая падающую вольт-амперную характеристику, имеет малую устойчивость. В области II (80 - 800 А) напряжение дуги почти не изменяется, что объясняется увеличением сечения столба дуги и активных пятен пропорционально изменению величины сварочного тока, поэтому плотность тока и падение напряжения во всех участках дугового разряда сохраняются постоянными. В этом случае статическая характеристика сварочной дуги жесткая. Такая дуга широко применяется в сварочной технике. При увеличении сварочного тока более 800 А (область III) напряжение дуги снова возрастает. Это объясняется увеличением плотности тока без роста катодного пятна, так. как поверхность электрода уже оказывается недостаточной для размещения катодного пятна с нормальной плотностью тока. Дуга с возрастающей характеристикой широко применяется при сварке под флюсом и в защитных газах.

 

При применении постоянного тока различают дугу прямой и обратной полярности. При прямой полярности отрицательный полюс силовой цепи — катод — находится на электроде, а положительный полюс — анод — на основном металле. При обратной полярности плюс на электроде, а минус на изделии.

 

 

При сварке на постоянном токе прямой полярности температура в различных зонах сварочной дуги:

в середине столба дуги — около 6000 °С;

в анодной области — 2600 °С;

в катодной области — 2400 °С;

в сварочной ванне — 1700...2000 °С.

 

При сварке на переменном токе распределение тепла дуги и температуры в катодной и анодной областях примерно одинаково (катодная область на электроде).

Плавление металла электрода и его перенос в дуге при сварке

 

Нагрев и плавление электрода осуществляются за счет энергии, выделяемой в активном пятне, расположенном на его торце, и теплоты, выделяющейся по закону Ленца - Джоуля, при протекании сварочного тока по вылету электрода. Вылетом называют свободный участок электрода от места контакта с токопроводом до его торца. В начальный момент ручной дуговой сварки вылет электрода составляет 400 мм и изменяется по мере плавления электрода, при автоматической сварке он равен 12 - 60 мм. Расплавляясь в процессе сварки, жидкий металл с торца электрода переходит в сварочную ванну в виде капель разного размера. За 1 с может переноситься от 1 - 2 до 150 капель и более в зависимости от их размера. Независимо от основного положения сварки капли жидкого металла всегда перемещаются вдоль оси электрода по направлению к сварочной ванне. Это объясняется действием на каплю разных сил в дуге. В первую очередь к ним относятся гравитационная сила, электромагнитная сила, возникающая при прохождении по электроду сварочного тока, сила поверхностного натяжения, давление образующихся внутри капли газов, которые отрывают ее от электрода и дробят на более мелкие капли.

 

Гравитационная сила проявляется в стремлении капли перемещаться по вертикали сверху вниз.

 

Сила поверхностного натяжения обеспечивает капле сферическую форму. Электромагнитные силы играют важнейшую роль в отрыве и направленном переносе капель к сварочной ванне при сварке швов в любом пространственном положении. Электрический ток, проходя по электроду, создает вокруг него магнитное поле, оказывающее сжимающее действие. Сжатие расплавленной части электрода приводит к образованию шейки у места перехода к твердому металлу (рис. 3). По мере уменьшения ее сечения и возрастания плотности тока жидкий металл формируется и отделяется в виде сферической капли.

Рис. 3. Схема сжимающего действия электромагнитных сил на жидкую каплю электродного металла.

 

 

При этом капля за счет действия электромагнитной силы приобретает направленность движения к сварочной ванне. Сила внутреннего давления газов также участвует в переносе капли. Расплавленный металл на электроде сильно перегрет. Образующиеся в нем газы способствуют отрыву его от торца электрода и могут раздробить на более мелкие капли.

 

При дуговой сварке плавящимся электродом различают три типа переноса электродного металла: крупнокапельный, мелкокапельный, или струйный, и перенос с образованием коротких замыканий дуги.

 

Характер переноса капель с электрода в сварочную ванну зависит от силы сварочного тока и напряжения дуги.

 

Установлено, что с увеличением силы тока размер капель уменьшается, а число их, образующихся в единицу времени, возрастает. С увеличением напряжения дуги, наоборот, размер капель увеличивается, а число их уменьшается. Так, при сварке голой проволокой на малых токах (плотностях) жидкий металл переходит в сварочную ванну в виде крупных капель с кратковременными замыканиями дугового промежутка, а при сварке покрытыми электродами и под флюсом на обычных плотностях тока - в виде мелких капель без замыкания дугового промежутка. При сварке в защитных газах и под флюсом тонкой проволокой на повышенных плотностях тока наблюдается мелкокапельный (струйный) перенос металла. В этом случае очень мелкие капли образуют сплошную коническую струю жидкого металла, переходящего в шов также без коротких замыканий, что уменьшает разбрызгивание металла и улучшает формирование швов.

 

Потери теплоты при ручной дуговой сварке составляют примерно 25%, из которых 20% уходят в окружающую среду дуги через излучение и конвекцию паров и газов, а остальные 5% — на угар и разбрызгивание свариваемого металла. Потери теплоты при автоматической сварке под флюсом составляют только 17%, из которых 16% расходуются на плавление флюса, а на угар и разбрызгивание затрачивается около 1% теплоты.

 

Действие магнитных полей на электрическую дугу

 

Магнитные поля могут образовываться вокруг проводника, электрод—дуга—металл. Явление магнитного дутья появляется при отклонении электрической дуги магнитными полями. На дугу может влиять как собственное магнитное поле, так и постороннее магнитное поле.

 

Влияние собственного магнитного поля. При этом действие несимметричного подвода тока относительно оси электрода может вызвать отклонение дуги (рис. 5).

Рис. 5. Действие на электрическую дугу собственного магнитного поля:

а — несимметричный подвод тока и отклонение дуги; б — симметричный подвод тока и нормальное положение дуги

 

Можно изменять величину и направление силовых линий вокруг дуги, создавать равномерное магнитное поле, уменьшать действие несимметричного поля подбором и регулированием угла наклона электрода.

 

Влияние близко расположенных магнитных масс. Ферромагнитные массы, близко расположенные к сварочной дуге, существенно влияют на отклонение дуги. Ферромагнитные

 

массы вызывают направленный магнитный поток, стремящийся сблизить дугу с массой, и дуга отклоняется в сторону ферромагнитной массы (рис. 6). Такое явление наблюдается при сварке деталей разной толщины, при сварке швов вблизи массивных элементов и др.

Рис. 6. Действие магнитных масс на отклонение дуги

 

Магнитное дутье пропорционально квадрату тока, и особенно интенсивно проявляется при сварке постоянным током величиной свыше 300...400 А, при сварке электродами с тонким покрытием. Оно проявляется слабее при применении электродов с толстым покрытием, при сварке под флюсом, а также при сварке на переменном токе.

 

Рекомендуется для ослабления действия магнитных полей на дугу вести сварку короткой дугой, производить присоединение провода к изделию ближе к месту сварки, выбирать нужный угол наклона электрода, при этом конец электрода следует направлять в сторону магнитного дутья.

 

 

Сварные соединения и швы.

 

Сварное соединение - неразъемное соединение, выполненное сваркой. Сварное соединение (рис. 1.1) включает три образующиеся в результате сварки характерные зоны металла в изделии: зону сварного шва 1, зону сплавления 2, зону термического влияния 3, а также часть основного металла 4, прилегающую к зоне термического влияния.

Рис. 1.1. Сварное соединение

 

Сварной шов - участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла.

 

Тема 25.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.