Пиши Дома Нужные Работы

Обратная связь

Недостатки электромагнитной системы

Прибор электромагнитной системы

Достоинства электромагнитной системы

· простота конструкции;

· надежность в работе;

· стойкость к перегрузкам.

Недостатки электромагнитной системы

· низкая чувствительность;

· большое потребление энергии;

· небольшая точность измерения;

· неравномерная шкала.

 

24 Приборы электродинамической системы.

Устройство: Измерительный механизм (рис. 1.5) [2] включает: – подвижную катушку 1;– неподвижную катушку 2, которая разделена на две части, расположенные на некотором расстоянии друг от друга для создания равномерного магнитного поля – ось 3;– стрелку 4.На оси прибора жестко закреп­лены подвижная катушка, указательная стрелка с балансными грузиками, магнитоиндукционный или воздушный успокоитель и концы двух противодействующих токопроводящих пружин. Противоположные концы пружин соединены с неподвижной катушкой. Одна из пружин соединена с рычажком корректора для установки стрелки на нуль.

Катушки приборов электродинамической системы, в зависимости от рода измеряемой величины, имеют свои особенности. У амперметров неподвижную катушку наматывают медным проводом диаметром 1–1,5 мм (несколько десятков витков), а подвижную – тонким алюминиевым проводом диаметром десятые доли миллиметра (до 250 витков). У вольтметров неподвижная катушка разделена на две части, каждая содержит по 1700 витков изолированного медного провода диаметром 0,2–0,27 мм. Подвижная катушка состоит из 200 витков алюминиевого изолированного провода такого же диаметра. У ваттметров неподвижная катушка такая же, как у амперметров, а подвижная, как у вольтметров.



Принцип действия. Перемещение подвижной части прибора происходит в результате взаимодействия магнитных полей подвижной и неподвижной катушек, по которым протекает измеряемый ток. При этом подвижная катушка стремится изменить свое положение таким образом, чтобы направления магнитных полей совпали. Возникающий вращающий момент пропорционален силе взаимодействия магнитных полей:

; (1.9)

, (1.10)

где и коэффициенты пропорциональности, зависит от конструкции прибора.

Отсюда

. (1.11)

Равновесие подвижной части прибора наступает при равенстве вращающего и противодействующего моментов: , т. е.

. (1.12)

Угол поворота подвижной катушки

. (1.13)

 

При изменении полярности тока изменяются направления токов в обеих катушках, а направление вращающего момента не изменяется, что позволяет применять эти приборы для измерений в цепях переменного и постоянного токов.

 

При измерении переменного тока

 

, (1.14)

где угол сдвига фаз токов и .

Шкала прибора квадратична, начальные 20 % шкалы считают нерабочими. При измерении малых токов до 0,5 А катушки амперметра соединяют последовательно, а при измерении больших токов свыше 0,5 А – параллельно. Катушки вольтметра соединяют последовательно друг с другом. Шкала прибора квадратична. Катушки ваттметра соединяют параллельно друг с другом. Шкала ваттметра линейна.

Достоинства:

– высокая точность;

– пригодность для измерений разных физических величин в цепях переменного и постоянного токов.

Недостатки:

– малая чувствительность;

– чувствительность к перегрузкам;

– чувствительность к воздействию внешних магнитных полей;

– большая потребляемая мощность;

– ограниченный частотный диапазон (до 1,5 кГц).

Область применения:

– в приборах для измерения постоянных и переменных токов и напряжений;

– в качестве образцовых приборов (класс точности 0,1; 0,2 и 0,5) при поверке и градуировке.

 

25 Приборы индукционной системы.

Принцип действия индукционной системы основан на взаимодействии магнитных потоков, создаваемых катушками тока и напряжения с вихревыми токами, наводимыми магнитным полем в алюминиевом диске.

Электрический счетчик содержит магнитопровод — 1 сложной конфигурации, на котором размещены две катушки; напряжения — 2 и тока — 3. Между полюсами электромагнита помещен алюминиевый диск — 4 с осью вращения — 5.

Вращающий момент, действующий на диск, определяется выражением:

Mвр = ki ΦU ΦI sinψ

где ФU — часть магнитного потока, созданного обмоткой напряжения и проходящего через диск счетчика; ФI — магнитный поток, созданный обмоткой тока; ψ — угол сдвига между ФU и ФI. Магнитный поток ФU пропорционален напряжению ФU = k2 U. Магнитный поток ФI пропорционален току ФI = k3 I.

Для того чтобы счетчик реагировал на активную энергию, необходимо выполнить условие:

sinψ = cosφ

В этом случае вращающий момент пропорционален активной мощности нагрузки:

Mвр = k1 k2 k3 U I cosφ = k4 P

Противодействующий момент создается тормозным магнитом — 6 и пропорционален скорости вращения диска:

В установившемся режиме Mвр = Mпр диск вращается с постоянной скоростью. Приравниваем два последних уравнения и решаем полученное уравнение относительно угла поворота диска:

Таким образом, угол поворота диска счетчика пропорционален активной энергии. Следовательно, число оборотов диска n тоже пропорционально активной энергии.

 

26 Измерение тока. Расширение предела измерения амперметра в цепях постоянного и переменного тока.

Для того чтобы использовать амперметр для измерения тока, цепь должна быть разомкнута, а измерительный прибор вставлен последовательно в цепь.

При включении амперметра в цепь должна соблюдаться полярность. Два вывода на амперметре помечены: положительный — красным, а отрицательный (общий) — черным.

Предостережение: всегда отключайте источник питания перед подключением амперметра к цепи.

Отрицательный вывод должен быть подключен к более отрицательной (с меньшим потенциалом) точке цепи, а положительный вывод к более положительной (с большим потенциалом) точке цепи. После подсоединения амперметра его стрелка переместится слева направо. Если стрелка перемещается в противоположном направлении, поменяйте выводы местами.

Предостережение:амперметр никогда не должен подключаться параллельно какому-либо элементу цепи. Если его подсоединить параллельно, то перемычка в приборе расплавится и серьезно повредит прибор или цепь. Никогда не подключайте амперметр непосредственно к источнику тока.

После установки амперметра в цепь и перед включением питания установите прибор на наивысший предел измерения. После включения питания шкалу амперметра можно переключить на наиболее подходящую. Это предотвратит резкое движение стрелки прибора вправо до упора, что может вывести из строя рамку прибора, а именно пружину механизма.

Внутреннее сопротивление амперметра прибавляется к сопротивлению цепи и увеличивает общее сопротивление цепи. Измеренный ток в цепи может быть ниже, чем ток, текущий в отсутствие амперметра. Однако поскольку сопротивление амперметра мало по сравнению с сопротивлением цепи, ошибкой можно пренебречь.

Амперметр с зажимами (измерительные клещи) не требует подсоединения к измеряемой цепи. Амперметр с зажимами использует электромагнитное поле, создаваемое током для измерения величины тока в цепи.

Для расширения пределов измерения амперметров применяют особые вспомогательные устройства - шунты.

Шунт представляет собой четырехзажимный резистор Rш, который вместе с измерительным механизмом, подключенным к его потенциальным зажимам П, при помощи токовых зажимов Т включается в цепь измеряемого тока Iх Шунт преобразует ток в падение напряжения. Для постоянного тока уравнение преобразования имеет вид: Uш = Rш Iш, где Iш - ток в шунте.. Но шунт можно рассматривать и как делитель напряжения с коэффициентом деления (шунтирования):

где Iо - ток в измерительном механизме; Rи.м. - сопротивление измерительного механизма. Это позволяет расширить пределы измерения измерительного механизма по току, т.е. измерять токи, значительно превосходящие ток, на который рассчитан измерительный механизм. Из этого выражения следует

Шунты изготовляются из манганина и применяются почти исключительно с магнитоэлектрическими измерительными механизмами на постоянном токе. Применять шунты для электродинамической системы и других систем нецелесообразно, поскольку эти измерительные механизмы потребляют большую мощность, что приводит к необходимости иметь значительные Uш, а следовательно, и Rш, приводящие в свою очередь к увеличению габаритов и массы шунтов. Кроме того, применение шунтов на переменном токе приводит к погрешности, обусловленной перераспределением токов Iо и Iш при разных частотах из-за влияния реактивных сопротивлений измерительного механизма и шунта. На токи до 30...50 А применяют внутренние шунты, помещаемые в корпусе прибора. На большие токи шунты делаются наружными- для исключения нагревания прибора выделяемой в шунте мощностью. Наружные шунты изготовляются на токи до 10000 А и имеют массивные наконечники из красной меди для включения в цепь тока. Между наконечниками впаяны манганиновые пластины или круглые стержни для улучшения охлаждения шунта. Эти шунты делаются взаимозаменяемыми, т.е. на фиксированные Uш (60, 75, 100, 150, и 300 мВ) и потенциальные зажимы шунта соединяют с измерительным механизмом калиброванными проводами, сопротивления которых оговорены ГОСТ 8042-68. Калиброванные шунты в зависимости от точности их подгонки подразделяют на классы 0,02; 0,05; 0,1; 0,2; 0,5.

 

27 Измерение напряжения. Расширение предела измерения вольтметра в цепях постоянного и переменного тока.

Напряжение существует между двумя точками, оно не течет через цепь подобно току. Следовательно, вольтметр, используемый для измерения напряжения, подсоединяется параллельно цепи.

Предостережение: если вольтметр включить в цепь последовательно, через него может пойти большой ток и повредить его.

Здесь также важна полярность. Отрицательный вывод вольтметра должен быть подсоединен к более отрицательной точке цепи (с меньшим потенциалом), а положительный вывод — к более положительной точке цепи (с большим потенциалом). Если точки соединения поменять местами, стрелка прибора отклонится влево, и измерение нельзя будет провести. Если это случится, поменяйте местами выводы.

Для проведения измерений необходимо сначала отключить питание цепи, подсоединить вольтметр, а затем снова включить питание. Сначала установите наивысший предел измерения вольтметра. После того как к цепи будет приложено напряжение, установите наиболее подходящую измерительную шкалу прибора.

Внутреннее сопротивление вольтметра подключено параллельно к измеряемому элементу цепи. Общее сопротивление параллельно включенным резисторам всегда меньше, чем сопротивление наименьшего резистора. В результате напряжение, которое показывает вольтметр, меньше, чем реальное напряжение в отсутствие вольтметра.

В большинстве случаев внутреннее сопротивление вольтметра достаточно высокое и ошибка настолько мала, что ею можно пренебречь. Однако если напряжение измеряется в цепи с высоким сопротивлением, сопротивление измерительного прибора может давать заметный эффект. Некоторые вольтметры, предназначенные для таких целей, имеют сверхвысокое внутреннее сопротивление.

 

28 Измерение мощности.

Измерение мощности может производиться как прямым, так и косвенным методами. Прямое измерение мощности осуществляется ваттметрами, которые по­требляют значительную энергию и заметно нагружают источник тока. Поэтому они применяются для измерения мощности по­рядка десятка ватт и более. Для малых значений мощность из­меряется косвенными методами. Мощность постоянного тока может быть определена с помощью вольтметра и амперметра (рис. 7.16, а), присоединенных к потребителю мощности, величина которой рассчитывается по формуле:

P=U·I

Если сопротивление нагрузки Rн , на котором рассеивается измеряемая мощность, известно, то достаточно измерить вели­чину тока, протекающего через нагрузку (рис. 7.16, б), и вычислить мощность по формуле:

P=I2∙Rн

Мощность может быть также определена посредством измерения напряжения на известном сопротивлении нагрузки Rн (рис. 7.16, в) и вычислена по формуле:

P=I2/Rн.

Рис. 7.16. Измерение мощности

 

Мощность в цепи трехфазного тока может быть измерена с помощью одного, двух и трех ваттметров.

Простейшие условия измерения активной мощности трехфазной системы имеются в том случае, если фазы приемников соединены звездой с доступной нейтральной точкой. В этом случае для измерения мощности одной фазы цепь тока ваттметра соединяют последовательно с одной из фаз приемника (рис. 7.17, а), а цепь напряжения включают под напряжение той фазы приемника, в которую включена цепь тока ваттметра, т. е. зажимы цепи напряжения ваттметра присоединяются один к линейному проводу, а второй-к нейтральной точке приемника. В подобных условиях измеренная мощность

PИЗ = PФ = UФ IФ cos φ


а мощность симметричного приемника

P =3 PИЗ =3 UФ IФ cos φ


Часто нейтральная точка недоступна или фазы приемника соединены треугольником. Тогда применяется измерение с помощью искусственной нейтральной точки (рис. 7.17,б)

 

Рис. 7.17. Схема измерения активной мощности в симметричной трехфазной системе:
(а - при доступной нейтральной точке,б - с искусственной нейтральной точкой

Такая точка (точнее узел) составляется из цепи напряжения ваттметра с сопротивлением rвт.н и двух добавочных резисторов С такими же сопротивлениями. При таком соединении цепь напряжения ваттметра находится под фазным напряжением, а через цепь тока прибора проходит фазный ток. Следовательно, и при таком измерении

 

P = 3 PИЗ

Для измерения активной мощности в четырехпроводной установке (т. е. установке с нейтральным проводом) при несимметричной нагрузке применяют способ трех ваттметров (рис.7.18). В такой установке каждый из ваттметров измеряет активную мощность одной фазы, а активная мощность установки определяется как сумма мощностей, измеренных тремя ваттметрами:

Рис. 7.18. Схема измерения активной мощности в трехфазной четырехпроводной системе (способ трех ваттметров)

В трехпроводных сетях при несимметричной нагрузке мощность измеряют способом двух ваттметров.

 

Если включить два ваттметра в трехпроводную систему постоянного тока (рис. 7.19), то они будут измерять мощность всей установки. При этом не имеет значения, каковы напряжения отдельных цепей, объединенных в трехпроводную систем. Если вместо постоянных тока и напряжения рассматривать мгновенные значения напряжений и токов трехфазной системы, то в таких условиях ваттметры будут показывать средние значения мгновенных мощностей, т. е. активные мощности. Но следует иметь в виду, что хотя Р = P1 + Р2, мощность системы равна сумме показаний двух ваттметров, но эта сумма алгебраическая, т. е. показание одного из ваттметров может быть отрицательным - стрелка одного из ваттметров может отклоняться в обратную сторону, за нуль шкалы. Чтобы отсчитать в таких условиях показание ваттметра нужно переключить зажимы цепи напряжения. Показания прибора после такого переключения следует считать отрицательными.

Рис. 7.19. Схема измерения активной мощности в трехфазной трехпроводной системе (способ двух ваттметров)

 

29 Измерение электрической энергии.

Электротехническое изделие в соответствии со своим назначением потребляет (вырабатывает) активную энергию, расходуемую на совершение полезной работы. При постоянстве напряжения, тока и коэффициента мощности количество потребленной (выработанной) энергии определяется соотношением Wp = UItcosφ = Pt

где P=UIcosφ — активная мощность изделия; t — продолжительность работы.

Единицей энергии в СИ служит джоуль (Дж). В практике еще находит применение внесистемная единица измерения Ватт х час (Вт х ч). Соотношение между этими единицами следующее: 1 Вт-ч=3,6 кДж или 1 Вт-с=1 Дж.

В цепях периодического тока количество израсходованной или выработанной энергии измеряют индукционными или электронными электрическими счетчиками.

Конструктивно индукционный счетчик представляет собой микроэлектродвигатель, каждому обороту ротора которого соответствует определенное количество электрической энергии. Соотношение между показаниями счетчика и числом оборотов, совершенных двигателем, называют передаточным числом и указывают на щитке: 1 кВт х ч = N оборотов диска. По передаточному числу определяют постоянную счетчика C=1/N, кВт х ч/об; C=1000-3600/N Вт х с/об.

В СИ постоянная счетчика выражается в джоулях, так как число оборотов — безразмерная величина. Счетчики активной энергии выпускают как для однофазных, так и для трех- и четырехпроводных трехфазных сетей.

Рис. 1. Схема включения счетчиков в однофазную сеть: а — непосредственное, б - черед измерительные трансформаторы

Однофазный счетчик (рис. 1, а) электрической энергии имеет две обмотки: токовую и напряжения и может быть включен в сеть по схемам, подобным схемам включения однофазных ваттметров. Для исключения ошибок при включении счетчика, а следовательно, и ошибок учета энергии рекомендуется во всех случаях использовать схему включения счетчика, указанную на крышке, закрывающей его выводы.

Необходимо отметить, что при изменении направления тока в одной из обмоток счетчика диск начинает вращаться в другую сторону. Поэтому токовую обмотку прибора и обмотку напряжения следует включать так, чтобы при потреблении энергии приемником диск счетчика вращался в направлении, указанном стрелкой.

Токовый вывод, обозначенный буквой Г, подключают всегда со стороны питания, а к нагрузке подключают второй вывод токовой цепи, обозначенный буквой И. Кроме того, вывод обмотки напряжения, однополярный с выводом Г токовой обмотки, подключают также со стороны питания.

При включении счетчиков через измерительные трансформаторы тока необходимо одновременно учитывать полярность обмоток трансформаторов тока и трансформаторов напряжения (рис. 1, б).

Счетчики выпускают как для применения с любыми трансформаторами тока и трансформаторами напряжения — универсальные, в условное обозначение которых добавлена буква У, так и для применения с трансформаторами, номинальные коэффициенты трансформации которых указаны на их щитке.

 

30 Измерение сопротивления

 

Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток Ix, но и ток Iv, протекающий через вольтметр. Поэтому сопротивление

Rx = U / (I – U/Rv) (110)

где Rv — сопротивление вольтметра.

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра UA = IRА. Поэтому

Rx = U/I – RА (111)

где RА — сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений — схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током Iv, а во второй — падением напряжения UА, будет невелика по сравнению с током Ix и напряжением Ux.

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением Rx (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания — в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та-

Рис. 339. Схемы для измерения сопротивления методом амперметра и вольтметра

Рис. 340. Мостовые схемы постоянного тока, применяемые для измерения сопротивлений

ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

Rx = (R1/R2)R3 (112)

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление Rx (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 — гальванометр, а к зажимам 5 и 6 — источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление Rx отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением Rx и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями Rx и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

Rx = R0R1/R4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления Rx. Это позволяет проградуировать шкалу гальванометра в единицах сопротивления Rx или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением Rx (рис. 341) и добавочным резистором RД в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора RД ток в цепи зависит только от сопротивления Rx. Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением Rx подключают к различным зажимам.

 

 

 

31 Измерение неэлектрических величин.

Поговорим о некоторых способах преобразования неэлектрических величин в электрические, с целью понять общий принцип измерений неэлектрических величин электрическими методами.

Нередко такими методами производят замеры температуры, частоту вращения, давления, расход газов и жидкостей и др. Предназначенные приборы для измерения этих величин обладают преобразователем – это датчик, а их шкала отградуирована непосредственно в единицах измеряемых величин. Датчик же это элемент представляющий собой, преобразующий какую-либо физическую величину в сигнал, подходящий для замеров, передачи, регистрации, и конечно для воздействия им на управляемые процессы. Более широко используют датчики, действие которых сформировано на изменении электрического сопротивления, индуктивности, емкости – параметрические датчики, или на возникновении ЭДС вследствие теплового, механического, акустического, магнитного или оптического воздействия – генераторные датчики.

Параметрические датчики включают в цепь, содержащую источник тока и чувствительный измерительный прибор, который проводит регистрацию изменение силы тока, вызванное изменением сопротивления датчика. Реостатные датчики же собой представляют специальные резисторы, изменяющие под влиянием механических воздействий на них сопротивление цепи, в которую они включены.

Во время механического воздействия, например, на подвижный контакт реостата, сопротивление цепи и сила тока в ней изменяются, и прибор в результате сигнализирует о степени неэлектрического воздействия.

Проволочные датчики тензометры изменяют электрическое сопротивление вследствие деформации. Изготавливают тензометры из нихрома, константана или железохромалюминиевого сплава. Из этих материалов проволоку диаметром 0,02 – 0,04 мм закрепляют с помощью специального клея между двумя листами тонкой бумаги. Концы проволок тензометра крепко соединяют с медными проводниками, при помощи которых тензометр подключают в электрическую цепь. Воспринимая механическую нагрузку, тензометр деформируется, вследствие чего электрическое сопротивление проволоки изменяется.

Индуктивные датчики в момент растяжения, сжатия, охлаждения или нагревания их сердечника изменяют свое индуктивное сопротивление. Индуктивные датчики подключают в цепь переменного тока. В процессе изменения индуктивного сопротивления датчика подобающим образом меняется и сила тока в цепи. То есть на момент действия определённой силы на подвижную часть сердечника сокращается зазор между ней и неподвижной частью сердечника, от этого меняется его индуктивность, а значит и значение индуктивного сопротивления. В конечном итоге в зависимости от этой силы изменяется сила тока в обмотке индуктивного датчика. Этим же образом, при помощи индуктивного датчика по изменению силы тока можно определять значение той силы, которая воздействует на подвижную часть сердечника.

При механическом воздействии на ёмкостный датчик, он изменяет значение емкостного сопротивления, вследствие чего соответственно изменяется сила тока в цепи, в которую он включен. То есть на момент действия на обкладку конденсатора опять таки определённой силы, происходит изменение расстояние между его обкладками, а стало быть, и емкость конденсатора. Изменение ёмкости конденсатора инициирует подобающее изменение ёмкостного сопротивления, а в результате – изменение силы тока в цепи ёмкостного датчика. Этим же образом, по изменению силы тока в цепи, в которую подключён ёмкостный датчик, можно определять значении силы, воздействовавшей на него.

Термопара, микромашина постоянного тока относятся к генераторным датчикам. На момент изменения скорости вращения вала якоря машины постоянного тока изменяется значение ЭДС индукции. Фотоэлектрический датчик действует на свет, падающий на фотоэлемент. От этого возникает электрический ток, регистрируемый чувствительным прибором.

Широко применяют также пьезоэлектрические и другие генераторные датчики. Генераторные датчики включают в цепь без самостоятельного источника питания, так как они сами вырабатывают электрическую энергию. Работникам электротехнических профессий часто выдается пользоваться тахометром – специализированным прибором, предназначенным для замера частоты вращения.

Поговорим о действие магнитоиндукционного тахометра, а также рассмотрим его устройство. Ось тахометра связана с постоянным магнитом. Если же ось тахометра присоединить к валу машины, например, электродвигателя, то в момент вращения вала магнитное поле постоянного магнита станет пересекать алюминиевый колпачок. В итоге в колпачке возникнут вихревые токи; от частоты вращения оси тахометра зависит значение силы этих токов, а стало бы, и от частоты вращения вала машины.

От этих взаимодействий магнитных полей, формируемых постоянным магнитом и вихревыми токами, индуцируемыми в алюминиевом колпачке, конечный поворачивается и заставляет двигаться стрелку, соединенную с осью колпачка. Угол отклонения стрелки таким образом пропорционален частоте вращения вала машины. Магнито-индукционные тахометры надежны в эксплуатации и просто устроены. Также существуют тахометры, внутри которых вмонтирована микромашина переменного или постоянного тока и электроизмерительный чувствительный прибор, непосредственно отградуированный в единицах частоты вращения.

Используют и ещё более сложные по устройству, но тем не менее и более точные тахометры. Широкое распространение в промышленности получило измерение электрическими методами неэлектрических величин, а также и во многих других случаях. Осуществление автоматического контроля и управления тоже связано с применением этих методов.

 

65 Техника безопасности при работе с электроустановками.

Информация в любых источниках, связанных с охраной труда и нормирующими документами. Читать ПУЭ (соотв. разделы), ПТБ и т.п.

 

66 Электронно-лучевая трубка.

На рис. 15 показано устройство электронно-лучевой трубки с электростатической фокусировкой и электростатическим отклонением луча. В трубке имеется оксидный подогревный катод с эмиттирующей поверхностью, обращенной к отверстию в модуляторе. На модуляторе относительно катода устанавливается небольшой отрицательный потенциал. Далее по оси трубки (и по ходу луча) располагается фокусирующий электрод, называемый также первым анодом, его положительный потенциал способствует вытягиванию электронов из прикатодного пространства через отверстие модулятора и формированию из них узкого луча. Дальнейшую фокусировку и ускорение электронов осуществляет поле второго анода (ускоряющего электрода). Его потенциал в трубке наиболее положительный и составляет единицы – десятки киловольт. Совокупность катода, модулятора и ускоряющего электрода образует электронную пушку (электронный прожектор). Неоднородное электрическое поле в пространстве между электродами действует на электронный пучок как собирательная электростатическая линза. Электроны под действием этой линзы сходятся в точку на внутренней стороне экрана. Экран изнутри покрыт слоем люминофора – вещества, преобразующего энергию потока электронов в свет. Снаружи место падения потока электронов на экран светится.

Для управления положением светящегося пятна на экране и тем самым получения изображения электронный луч отклоняют по двум координатам с помощью двух пар плоских электродов – отклоняющих пластин X и Y. Угол отклонения луча зависит от напряжения, приложенного к пластинам. Под действием переменных отклоняющих напряжений на пластинах луч обегает разные точки на экране. Яркость свечения точки зависит от силы тока луча. Для управления яркостью подают переменное напряжение на вход модулятора Z. Для получения устойчивого изображения периодического сигнала осуществляют его периодическую развертку на экране, синхронизируя линейно изменяющееся напряжение развертки по горизонтали X исследуемым сигналом, который одновременно поступает на пластины вертикального отклонения Y. Таким путем формируют изображения на экране ЭЛТ. Электронный луч обладает малой инерционностью.

Кроме электростатической, применяется и магнитная фокусировка электронного луча. Для нее используют катушку с постоянным током, в которую вставляют ЭЛТ. Качество магнитной фокусировки выше (меньше размер пятна, меньше искажения), однако магнитная фокусировка громоздкая и непрерывно потребляет энергию.

Широко применяется (в кинескопах) магнитное отклонение луча, осуществляемое двумя парами катушек с токами. В магнитном поле электрон отклоняется по радиусу окружности, и угол отклонения может быть существенно большим, чем в ЭЛТ с электростатическим отклонением. Однако быстродействие магнитной отклоняющей системы невысокое из-за инерционности катушек с током. Поэтому в осциллографических трубках применяют исключительно электростатическое отклонение луча как менее инерционное.

 

Экран является важнейшей частью ЭЛТ. В качестве электролюминофоров применяют различные неорганические соединения и их смеси, например, сульфиды цинка и цинка-кадмия, силикат цинка, вольфраматы кальция и кадмия и т.п. с примесями активаторов (меди, марганца, висмута и др.). Основные параметры люминофора: цвет свечения, яркость, сила света пятна, световая отдача, послесвечение. Цвет свечения определяется составом люминофора. Яркость свечения люминофора в Кд/м2

B ~ (dn/dt)(U-U0)m,

где dn/dt – поток электронов в секунду, то есть, ток луча, А;

U0 - потенциал свечения люминофора, В;

U – ускоряющее напряжение второго анода, В;

m = 1,5 …2.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.