Пиши Дома Нужные Работы

Обратная связь

Свойства опрераций над матрицами

Вычисление определителей II и III порядка

Определителем называется число, записанное в виде квадратной таблицы:

Определитель II порядка вычисляется по формуле:

Определитель III порядка можно вычислить по правилу Сарруса:

Основные свойства определителей:

1.1. Значение определителя не изменится, если:

1) строки заменить на столбцы, такое действие называется транспонирование, т.е. действия, выполняемые со строками, справедливы и для столбцов;

все элементы одной строки умножить на какое-либо число и прибавить к соответствующим элементам другой строки.

Такие действия с элементами определителя называются элементарными преобразованиями.

2)Определитель меняет знак на противоположный, если две каких-либо строки поменять местами.

3)Определитель равен нулю, если:

- все элементы какой-либо строки равны нулю;

- соответствующие элементы каких-либо двух строк равны;

- соответствующие элементы каких-либо двух строк пропорциональны.

Минор и алгебраическое дополнение

Минором к элементу определителя -го порядка называетсяопределитель -го порядка, полученный из исходного вычеркиванием -той строки и -того столбца. Задание. Найти минор к элементу определителя .

Решение. Вычеркиваем в заданном определителе вторую строку и третий столбец:

тогда

Ответ.

Алгебраическое дополнение

Алгебраическим дополнением к элементу определителя -го порядка называется число

Пример

Задание. Найти алгебраическое дополнение к элементу определителя

Решение.

Ответ.

4)Правило Крамера

Пусть матричное уравнение AX = B описывает систему n линейных уравнений с n неизвестными.Если , то система (1) является совместной и имеет единственное решение, описываемое формулой



где ; – определитель, полученный из определителя D заменой i-го столбца столбцом свободных членов матрицы B:

   

5) Действия над матрицамии их свойства.

1. Сложение матриц - поэлементная операция

2. Вычитание матриц - поэлементная операция

3. Произведение матрицы на число - поэлементная операция

4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

Amk*Bkn=Cmn причем каждый элемент сijматрицы Cmn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.

Покажем операцию умножения матриц на примере

5. Возведение в степень

m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц

6. Транспонирование матрицы А. Транспонированную матрицу обозначают AT или A'

Строки и столбцы поменялись местами

Пример

 

Свойства опрераций над матрицами

A+B=B+A

(A+B)+C=A+(B+C)

λ(A+B)=λA+λB

A(B+C)=AB+AC

(A+B)C=AC+BC

λ(AB)=(λA)B=A(λB)

A(BC)=(AB)C

(A')'=A

(λA)'=λ(A)'

(A+B)'=A'+B'

(AB)'=B'A'

6)Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы.

Пусть исходная система выглядит следующим образом

Матрица называется основной матрицей системы, — столбцом свободных членов.

Тогда, согласно свойству элементарных преобразований над строками, основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных [4].

Тогда переменные называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число , где , то рассматриваемая система несовместна, т.е. у неё нет ни одного решения.

Пусть для любых .

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом ( , где — номер строки):

,
где

Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.

7) Рассмотрим проблему определения операции, обратной умножению матриц.

Пусть A— квадратная матрица порядка n

Матрица A−1, удовлетворяющая вместе с заданной матрицей A равенствам: A−1⋅A=A⋅A−1=E,A−1⋅A=A⋅A−1=E,

называется обратной. Матрицу A называют обратимой, если для нее существует обратная, в противном случае — необратимой.

Обратная матрица может существоватьтолько для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.