Пиши Дома Нужные Работы

Обратная связь

РОЗДІЛ 1 ЗАГАЛЬНІ ОСНОВИ БЕЗПЕКИ ЖИТТЄДІЯЛЬНОСТІ 13 глава

Вібрація – це коливання твердих тіл, яке виникає при зсуві центру ваги тіла, що рухається, обертається або при періодичній зміні форми тіла порівняно зі статичним станом цього тіла. Вібрація характеризується частотою (Гц), амплітудою зсуву, тобто розміром найбільшого відхилення точки, що коливається від положення рівноваги (м), коливальною швидкістю (м/с) та коливальним прискоренням (а/с2). Ступінь і характер впливу на людину залежить від амплітуди і частоти коливань. Так, власні частоти внутрішніх органів знаходяться в області 6 – 9 Гц. Отже, вібрація машин, площадок, ручних інструментів і т. д. особливо небезпечна при частотах 8 – 12; 17 – 25 Гц і т. д., тому що вони можуть бути резонансними для органів. При роботі з ручними машинами (їхня вібрація знаходиться в області 100 Гц) виникають судинні розлади. Загальна вібрація, що має широкий спектр частоти, справляє несприятливий вплив на центральну нервову систему, вестибулярний апарат, шлунково-кишковий тракт, викликає запаморочення, оніміння кінцівок, захворювання суглобів. Тривалий вплив вібрації викликає фахове захворювання – вібраційну хворобу.
Методи боротьби з вібрацією зводяться в основному до демпфірування установок, машин, механізмів, використання різноманітного роду амортизаторів, вібропоглинання.
Іонізуючі випромінювання
Світова громадськість стала виявляти серйозну занепокоєність із приводу впливу іонізуючих випромінювань на людину і навколишнє середовище з початку 50-х років. У результаті іспитів ядерної зброї в атмосфері, проведених трьома країнами (СРСР, США, Великобританія), радіоактивні опади стали поширюватися по всій земній кулі. У грудні 1955 року Генеральна Асамблея ООН заснувала науковий комітет щодо дії атомної радіації (НКДАР). Завдання цього комітету – вивчення рівнів радіації, її дії на навколишнє середовище і небезпеку для населення, що утворюється будь-яким джерелом радіації: як природним, так і штучним, включаючи радіоактивні опади. Це і стало початком наукових досліджень в галузі забезпечення захисту людини від іонізуючого випромінювання. До цього зусилля були в основному спрямовані на створення й удосконалення ядерної зброї.
Іонізація – це утворення позитивних і негативних іонів та вільних електронів з електрично нейтральних атомів та молекул. Атом, що загубив електрони, стає іоном, він має позитивний заряд. Для цього необхідно витратити енергію. Атом, що приєднав електрон, стає негативним іоном. Цей процес може супроводжуватись як витратою, так і виділенням енергії. Випромінювання, взаємодія яких із середовищем призводить до іонізації атомів і молекул, називається іонізуючим.
Велика частина випромінювань надходить від радіоактивних речовин, що знаходяться у земній корі. Іонізуючі випромінювання існували на Землі задовго до зародження на ній життя і були присутні в Космосі до виникнення самої Землі.
Родоначальником науки про радіацію є французький вчений Анрі Беккерель, який поклав у ящик столу фотографічні плівки і притиснув їх шматком мінералу, що містив уран. Коли він проявив плівки, то виявив на них сліди якихось випромінювань. Він назвав їх радіоактивними (1986 р.)
Радіоактивність – це самовільне перетворення ядер атомів одних елементів у інші. Атом складається з ядра й електронів, що обертаються навколо нього. Ядро складається з протонів, що мають позитивний заряд, і нейтронів – нейтральних часток. Атоми, що мають ядро з однаковим числом протонів, але не однакове число нейтронів, до різновидів одного хімічного елемента і називаються ізотопами. Так, уран 238 містить 92 протони і 146 нейтронів, а уран 235 – 92 протони і 143 нейтрони. Ядра всіх ізотопів хімічних елементів утворюють групу “нуклідів”. Більшість нуклідів не стабільні, вони увесь час перетворюються в інші нукліди. Так, уран 238 час від часу втрачає 4 частки (2 протони і 2 нейтрони) і перетворюється у торій 234.
При кожному такому акті розпаду визволяється енергія, що поширюється у вигляді випромінювання. Якщо випромінюється позитивно заряджена частинка або нейтральна (2 протони і 2 нейтрони), як у випадку з ураном 238, то це називається a-випромінюванням, якщо випромінюються електрони – це називається -випромінюванням. При випромінюванні частинок ядра збуджуються й атоми. Знімається збудження викидом чистої енергії. Це називається g-випромінювання. Вони характеризуються активністю (числом радіоактивних перетворень за одиницю часу).
Одиницями радіоактивності є:
Беккерель: “Бк” – дорівнює 1 перетворенню за секунду.
Кюрі “Кі” – дорівнює 3,7 ґ 1 010 ядерних перетворень за секунду.
Тобто Кі більш вагома порівняно з Бк одиницею.
Зміна енергетичного стану електронів атомів може викликатися й іншими причинами. Так, наприклад, у результаті енергетичних процесів, що відбуваються на сонці, змінюється енергетичний стан електронів, що знаходяться на зовнішніх оболонках атомів. При цьому випромінюється енергія довгої хвилі (400…1) ґ 10-9 м, що називається ультрафіолетовим випромінюванням. Якщо випромінювання виникає внаслідок зміни енергетичного стану електронів на внутрішніх оболонках атомів, ці випромінювання називають рентгенівськими (…1) ґ 10-12 м. Але природа цих випромінювань загальна. Вони виникають при зміні енергетичних станів ядер або електронів атомів і являють собою короткохвильове електромагнітне випромінювання чистої (квантової) енергії. Таким чином, іонізуюче випромінювання поділяється на 2 види: електромагнітне (фотонне), до якого належать ультрафіолетове, рентгенівське і γ-випромінювання, та корпускулярне (α, β, нейтрони, протони) (див. рис.2.).

Рис. 2. Класифікація іонізуючих випромінювань



Різні види випромінювання супроводжуються звільненням різної кількості енергії і мають різну проникну здатність. Звідси і неоднаковий вплив на органи живого організму.
Так, корпускулярне випромінювання, що складається з -часток (потік важких часток) затримується, наприклад, листом паперу і практично не здатне проникнути через зовнішній прошарок шкіри. Довжина пробігу в повітрі – 2,5 см, у біологічній тканині – 31 мкм, в алюмінію – 16 мкм.
Дія -часток надзвичайно небезпечна, якщо вони потрапляють усередину організму через рану, з їжею, повітрям.
Корпускулярне випромінювання, що складається з -частинок, має більшу проникну спроможність. Довжина пробігу в повітрі – 17,8 м, у біологічній тканині – 1–2 см, у воді – 2,6 см, в алюмінію – 9,8 см.
Електромагнітні випромінювання ( ) поширюються зі швидкістю світла і мають високу проникну здатність. Цей вид випромінювання може затримати лише товста бетонна (приблизно 0,5 м товщиною) або свинцева плита. Довжина пробігу в повітрі – декілька сотень метрів.
Ушкоджень у живому організмі, викликаних іонізуючим випромінюванням, буде тим більше, чим більше енергії воно передасть тканинам. Кількість такої переданої організму енергії називається дозою.
Доза, яка характеризує іонізуючу спроможність випромінювання в повітрі, називається експозиційною (Х). Вона вимірюється в кулонах на кілограм (Кл/кг):
(Кл/кг),
де Q – повний заряд іонів одного знаку, що виникають у по-вітрі, (Кл);
m – маса повітря, (м).
Позасистемна одиниця – рентген (Р):
1Р = 2,58 ґ 104 (Кл/кг).
Поглинена доза – це кількість енергії випромінювання, поглинена одиницею маси тіла, що опромінюється.
Поглинена доза (Д) вимірюється в греях (Гр):
(Гр) ,
де Е – кількість енергії випромінювання (Дж);
т – маса тіла речовини (кг).
Одиниця виміру 1 грей = 1Дж / 1кг. У радіобіології і медицині частіше використовують позасистемну одиницю – рад (1 рад = 0,01 Гр). Проте ця доза (поглинена) не враховує того, що різний вид випромінювання при одній і тій самій поглиненій дозі має різну небезпеку. Скажімо, -випромінювання більш небезпечне, ніж -випромінювання або -випромінювання.
Доза, що враховує спроможність даного виду опромінення уражати тканини, називається еквівалентною.
Еквівалентна доза – це поглинена доза (Н), помножена на коефіцієнт, що показує спроможність даного виду випромінювання ушкоджувати тканини організму.
,
де Д – поглинена доза даного виду випромінювання (Гр);
– коефіцієнт якості випромінювання.
Еквівалентна доза вимірюється в зівертах (Зв). За основний вид випромінювання (еквівалент), з яким порівнюють усі інші, прийняте або рентгенівське випромінювання.
Коефіцієнт якості випромінювання для -випромінювання дорівнює одиниці ( = 1 для -випромінювання).
Отже,
.
Позасистемна одиниця 1 бер = 0,01 зв = 0,01 Гр = 1 рад. Тобто для -випромінювання поглинена доза дорівнює еквівалентній дозі. Отже, 1 рад » 1 бер » 1 Р.
Варто враховувати, що різні біологічні системи й органи не однаково сприймають одні й ті самі дози опромінення. Чутливість біологічних систем підвищується із збільшенням маси і ступеня організації: найбільш стійкі спори, потім – рослини, найпростіші організми, тварини. Людина належить до одного із найбільш чутливих біологічних об’єктів (у 50 % випадків при дозі опро-мінення 4 Зв (400 бер) спостерігається загибель людини протягом 30 діб). У той же час для рослин ця доза, для рівноцінного ефекту, складає приблизно 1 500 Зв; амеби – 1 000 Зв; равликів – 200 Зв; риби, птиці – 8–20 Зв.
Вплив опромінення залежить від чутливості органів. Тому еквівалентні дози опромінення варто використовувати з різними коефіцієнтами, що враховують чутливість органів до опромінення. Це реалізується в ефективній еквівалентній дозі.
Ефективна еквівалентна доза – це еквівалентна доза (Неф), помножена на коефіцієнт, що враховує різну чутливість органів до- опромінення.
,
де Н – еквівалентна доза (Зв);
Т – зважений коефіцієнт чутливості органів (коефіцієнт радіаційного ризику).
Коефіцієнт Т для різноманітних органів має різні значення, наприклад: статеві органи – 0,25; молочна залоза – 0,15; червоний відсталий мозок – 0,12; легені – 0,12; щитовидна залоза, кістки – 0,03; інші органи і тканини – 0,3.
Враження живої тканини іонізуючим опроміненням залежить так само від часу опромінення.
Короткочасне опромінення більш небезпечне, ніж опромінення такою ж дозою, але протягом тривалого часу.
Короткочасна сумарна еквівалентна доза опромінення людини, що дорівнює 4 Зв, призводить у 50 % випадків до смерті, загальне опромінення такої ж дози протягом десятиліть не дає ніяких безпосередніх негативних ефектів.
Джерела іонізуючого випромінювання
Джерела випромінювання поділяються на природні і штучні. Природним джерелом іонізуючого опромінення є космічний простір, а також радіоактивні речовини, що знаходяться в земній корі. Опроміненню від природних джерел піддається будь-який житель планети. Дози опромінення залежать від місця проживання (тому що не скрізь рівномірно залягають породи, що містять радіоактивні речовини ); від способу життя (у помешканні або зовні людина проводить більшу частину життя); від місця роботи (наприклад, у будівництві часто застосовують будівельні матеріали з підвищеною радіацією, пілоти одержують більшу дозу порівняно з іншими професіями і т. д.).
Космічні промені нерівномірно розподілені на поверхні Землі. Так, Північний і Південний полюси одержують більше радіації, ніж екваторіальна область, через наявність магнітного поля Землі, що відхиляє заряджені частинки.
Рівень опромінення росте з висотою, оскільки розряджається повітря, а воно відіграє роль захисного екрана. Люди, що живуть на рівні моря, одержують від космосу в середньому 300 мікрозівертів (мільйонних долей Зв) на рік. Люди, що живуть у горах вище 200 м, одержують дозу в декілька разів більшу, ніж жителі рівнини. Людина, що летить в аероплані на висоті 12 000 м, одержує дозу опромінення приблизно в 25 разів більшу, ніж на Землі.
Земна радіація нерівномірна, вона залежить від складу земних порід. Так, у США, Франції, Німеччині, Італії, Японії жителі одержують від 0,3 до 0,6 мілізіверта на рік. У Бразилії, неподалік від міста Посус-ді-Калдас (200 км від Сан-Паулу), рівень радіації досягає 200 мілізв/рік (у 800 разів більше середнього). Там же, у курортному місті Гуарапари – 175 мілізв/рік. В Індії, штат Керала – 70 000 осіб живуть на вузькій (55 км) прибережній смузі й одержують від 3,8 до 8,7 мілізв/рік. Ці території Індії і Бразилії розташовані на ґрунтах і пісках, багатих торієм.
За підрахунками НКДАР ООН, середня ефективна доза зовнішнього опромінення від земних джерел дорівнює 350 мікрозівертів на рік. Трохи менше людина одержує з космосу.
Більшу частину, приблизно 2/3 ефективної дози природного опромінення, людина одержує від радіоактивних речовин, що потрапили в організм із їжею, водою, повітрям. Цей природний фон зазнає зміни в результаті діяльності людини. Ядерні іспити, аварії на АЕС, добування корисних копалин, згоряння усіх видів палива і т. д. до природного фона додає 1–3 %.
У даний час природний радіаційний фон (ПРФ) дорівнює приблизно 10 – 20 мікрорентген у час. Вимірюють його на відстані 110 см від поверхні землі, що відповідає центру тіла дорослої людини.
Штучними джерелами іонізуючого випромінювання є ядерні установки, ядерні реактори, рентгенівські апарати, прилади з радіоактивними елементами. Підписаний договір про припинення ядерних випромінювань у 3-х сферах (у 1963 р. США, СРСР, Англія) дав позитивний результат. Знизилася кількість радіоактивних опадів, зменшилося радіоактивне забруднення рослинності. Проте радіоізотопи з тривалим періодом напіврозпаду продовжують накопичуватися в ґрунті і надходити у флору.
Безумовно, аварії на АЕС є дуже великою загрозою для безпечного існування людини. Проте внесок атомної енергетики в сумарну дозу опромінення населення є одним із найскромніших. Статистика говорить про те, що атомна енергетика займає 20-те місце в числі небезпек сучасного середовища існування людини, у той час як рентгенівське опромінення займає 9-те місце, а протизаплідні засоби – 18-те.
У даний час основний внесок у дозу опромінення людини вносить медичне діагностичне устаткування.
Підприємства з видобутку, переробки і виробництва радіоактивних речовин також є штучними джерелами іонізуючого випромінювання. Це, в основному, уранові рудники, заводи для одержання збагаченого урану, очищення уранового концентрату, реактори.
Опромінення населення України за останні 14 років за рахунок штучних джерел радіації в основному пов’язане з наслідками аварії на Чорнобильській АЕС, а також аваріями на інших АЕС.

Дія іонізуючого випромінювання на людину
Внаслідок дії іонізуючого випромінювання на організм людини іонізовані живі тканини, у першу чергу – вода протоплазми клітин, її іони, вступають у взаємодію з киснем тканин, створюючи пероксидні з’єднання, що самі є сильними окислювачами і призводять до змін і загибелі живих клітин, утворення “вільних радикалів” і через них до порушення обмінних процесів, пригноблення ферментних і окремих функціональних систем, тобто порушення життєдіяльності всього організму.
Дію радіоактивного випромінювання на організм людини можна уявити в дуже спрощеному вигляді таким чином. Припустимо, що в організмі людини відбувається нормальний процес травлення. Їжа, що надходить, розкладається на більш прості з’єднання, які потім надходять через мембрану усередину кожної клітини і будуть використані як будівельний матеріал для відтворення собі подібних, для відшкодування енергетичних витрат на транспортування речовин і їхню переробку. Під час попадання на мембрану -випромінювання відразу ж порушуються молекулярні зв’язки, атоми перетворюються в іони. Крізь зруйновану мембрану в клітину починають надходити сторонні (токсичні) речовини, робота її порушується. Якщо доза випромінювання невелика, відбувається рекомбінація електронів, тобто повернення їх на свої місця. Молекулярні зв’язки відновлюються, і клітина продовжує виконувати свої функції. Якщо ж доза опромінення висока або дуже багато разів повторюється, то електрони не встигають рекомбінуватися; молекулярні зв’язки не відновляються; виходить з ладу велика кількість клітин; виходить з ладу орган; нормальна життєдіяльність організму стає неможливою.
Специфічність дії іонізуючого випромінювання полягає в тому, що інтенсивність хімічних реакцій, індуційованих вільними радикалами, підвищується й у них втягуються багато сотень і тисяч молекул, не порушених опроміненням. Таким чином, ефект дії іонізуючого випромінювання обумовлений не кількістю поглиненої енергії об’єктом, що опромінюється, а формою, в якій ця енергія передається. Ніякий інший вид енергії (теплова, електрична та ін.), що поглинається біологічним об’єктом у тій самій кількості, не призводить до таких змін, які спричиняє іонізуюче випромінювання.
Також необхідно зазначити деякі особливості дії іонізуючого випромінювання на організм людини:
– органи чуття не реагують на випромінювання;
– малі дози випромінювання можуть підсумовуватися і накопичуватися в організмі (кумулятивний ефект);
– випромінювання діє не тільки на даний живий організм, але й на його спадкоємців (генетичний ефект);
– різні органи організму мають певну чутливість до випромінювання.
Найсильнішому впливу піддаються клітини червоного кісткового мозку, щитовидна залоза, легені, внутрішні органи, тобто органи, клітини яких мають високий рівень розподілу. Природно, що при одній і тій самій дозі випромінювання у дітей вражається більше клітин, ніж у дорослих, тому що у дітей всі клітини знаходяться в стадії розподілу. А клітини дорослої людини перебувають у трьох різних стадіях розподілу.
Небезпека різних радіоактивних елементів для людини визначається спроможністю організму їх поглинати і накопичувати.
Радіоактивні ізотопи надходять всередину організму з пилом, повітрям, їжею або водою і поводять себе по-різному: деякі ізотопи розподіляються рівномірно в організмі людини (тритій, вуглець, залізо, полоній), деякі накопичуються в кістках (радій, фосфор, стронцій), інші залишаються в м’язах (калій, рубідій, цезій), накопичується в щитовидній залозі (йод), у печінці, нирках, селезінці (рутеній, полоній, ніобій) і т. д.
Ефекти, викликані дією іонізуючих випромінювань (радіації), систематизуються за видами ушкоджень і часом прояву. Ефекти за видами ушкоджень класифікуються на 3 групи: соматичні, соматико-стахотичні (випадкові, ймовірні), генетичні. Час прояву вказує дві групи поразок – ранні (або гострі) і пізні. Ранні поразки бувають тільки соматичні. Це призводить до смерті або променевої хвороби. Постачальником таких часток є в основному ізотопи, що мають коротку тривалість життя, -випромінювання, потік нейтронів.
Розрізняють дві форми променевої хвороби – гостру і хронічну. Гостра форма виникає в результаті опромінення великими дозами за короткий проміжок часу. При дозах порядку тисяч рад поразка організму може бути миттєвою. Хронічна форма розвивається в результаті тривалого опромінення дозами, що перевищують гранично припустимі (ГПД). Більш віддаленими наслідками променевої поразки можуть бути променеві катаракти, злоякісні пухлини та інше.
Нижче наведена шкала небезпек опромінення іонізуючими випромінюваннями:

З наведеної шкали бачимо, що при дозі від 75 до 100 бер відзначаються реакції у вигляді зсувів у формулі крові, змінюються деякі вегетативні функції організму. При дозах, що перевищують 100 бер, розвивається гостра променева хвороба, важкість якої залежить від дози (див. табл.4)

Таблиця 4
Ступені променевої хвороби

Доза, бер Ступінь променевої хвороби
100 – 200 Перший ступінь (легка)
200 – 300 Другий ступінь (середньої важкості)
300 – 500 Третя стадія (важка)
Більше 500 Четверта стадія (дуже важка)


Дози 500–600 бер вважаються смертельними. Вкрай уразливим органом є кришталик ока. Діти більш чутливі, ніж дорослі. Відносно невеликі дози опромінення хрящової тканини можуть уповільнити або зовсім припинити ріст кісток. Вкрай чутливий до радіації мозок плоду, особливо якщо мати піддається опроміненню між 8-им і 15-им тижнями вагітності.
За результатами досліджень НКДАР ООН зроблено такий висновок:
– не існує ніякої граничної зони, за якої відсутній ризик захворювання раком. Будь-яка, навіть найменша, доза збільшує вірогідність захворювання раком. Усяка додаткова доза ще більш збільшує цю вірогідність;
– ризик захворювання зростає прямо пропорційно дозі опромінення: при подвоєнні дози опромінення ризик подвоюється, при 3-х кратній дозі – потроюється і т. д.
Питання радіаційної безпеки регламентується Законом “Про радіаційну безпеку населення”, нормами радіаційної безпеки (НРБ-96) та ін.
Ми вже торкалися питання про те, що у різних органів організму чутливість до іонізуючого опромінення не однакова. Тому введемо поняття “критичний орган”.
Критичний орган – це орган, тканина, частина тіла, опромінення якого в даних умовах завдає найбільшого збитку здоров’ю.
Залежно від цього всі органи поділені на три групи:
I група – усе тіло; червоний кістковий мозок;
II група – м’язи, щитовидна залоза, жирова тканина, печінка, нирки, селезінка, шлунково-кишковий тракт, легені, кришталик ока й інші (за винятком, що належать до I і III груп);
III група – шкіряний покрив, кісткова тканина, кістки, передпліччя, щиколотки і стопи.
З іншого боку, серед усього населення є група людей, що вибрала для себе професію, пов’язану з дослідженнями, експлуатацією устаткування, яке має у своєму складі радіоактивні речовини. Є люди, які в силу незалежних від них обставин, опинилися на території, де побудовані, базуються атомні об’єкти. Виходячи з цього, усе населення (усі люди) поділене також на 3 групи:
Група “А” – постійно безпосередньо працюючі з джерелами іонізуючих випромінювань (оператори АЕС, фізики-атомщики, плавсклад атомних судів і т. д.).
Група “Б” – особи, що за умовами проживання або розміщення робочих місць можуть потрапляти під вплив іонізуючих випромінювань (мешкають у зоні АЕС, працюють у районі атомних лабораторій, заводів і т. д.).
Група “В” – усе населення.
У якості основних дозових меж для категорії “А” встановлюється гранично припустима доза (для різних критичних органів) за рік, а для категорії “Б” – межа дози за рік. Отже, ГДД і МД (див. табл. 5).
Таблиця 5
Гранично припустима межа дози

Група Гранично допустима доза ГДД для осіб категорії “А” за рік Межа дози для осіб категорії “Б” за рік
I 0,05 (5 бер) 0,005 (0,5 бер)
II 0,15 (15 бер) 0,015 (1,5 бер)
III 0,30 (30 бер) 0,03 (3 бер)

Гранично припустимою дозою (ГДД) вважають дозову межу для осіб групи “А”, одержану індивідуально за календарний рік, при якій рівномірне опромінення за 50 років наступного життя не може викликати несприятливих змін у стані здоров’я людини і його нащадків.
Ще існує норма Мінздраву: 35 бер за 70 років (якщо 0,5 бер (див. таблицю) ґ 70 років = 35 бер, тобто вона дорівнює межі дози за рік для осіб групи “Б”).
Для всього населення (група “В” спеціальних норм не має, тому що вона схильна до опромінення тільки від природного фону. У випадку ж необхідності, зміни умов роботи, життя набирають сили зазначені раніше норми).
Радіаційна безпека
Питання захисту людини від негативного впливу іонізуючого випромінювання виникли майже одночасно з відкриттям рентгенівського випромінювання і радіоактивного розпаду. Це обумовлено наступними факторами: по-перше, надзвичайно швидкий розвиток застосування знову відкритих випромінювань у науці та на практиці, і, по-друге, виявлення негативного впливу випромінювання на організм.
Заходи радіаційної безпеки використовуються на підприємствах і, як правило, потребують проведення цілого комплексу різноманітних захисних способів, що залежать від конкретних умов роботи з джерелами іонізуючих випромінювань і, в першу чергу, від типу джерела випромінювання.
Закритими називаються будь-які джерела іонізуючого випромінювання, обладнання яких виключає проникнення радіоактивних речовин у навколишнє середовище при передбачених умовах їхньої експлуатації та зносу. Це – гамма-установки різноманітного призначення; нейтронні, бета- і гамма-випромінювачі; рентгенівські апарати і прискорювачі заряджених часток. При роботі з закритими джерелами іонізуючого випромінювання персонал може піддаватися тільки зовнішньому опроміненню.
Захисні заходи, що дозволяють забезпечити умови радіаційної безпеки при застосуванні закритих джерел, засновані на знаннях законів поширення іонізуючих випромінювань і характеру їхньої взаємодії з речовиною.
Головні з них такі:
а) доза зовнішнього опромінення пропорційна інтенсивності випромінювання і часу впливу;
б) інтенсивність випромінювання від крапкового джерела пропорційна кількості квантів або часток, що виникають у ньому за одиницю часу, і обернено пропорційна квадрату відстані;
в) інтенсивність випромінювання може бути зменшена за допомогою екранів.
З цих закономірностей випливають основні принципи забезпечення радіаційної безпеки:
1) зменшення потужності джерел до мінімальних розмірів (“захист кількістю”);
2) скорочення часу роботи з джерелом (“захист часом”);
3) збільшення відстані від джерел до працюючих (“захист відстанню”);
4) екранування джерел випромінювання матеріалами, що поглинають іонізуюче випромінювання (“захист екраном”).
Кращими для захисту від рентгенівського і гамма-випромінювання є матеріали з великим Z (порядковим номером), наприклад свинець і уран. Проте, з огляду на високу вартість свинцю й урану, можуть застосовуватися екрани з більш легких матеріалів – просвинцьованого скла, заліза, бетону, залізобетону і навіть води. У цьому випадку, природно, еквівалентна товща екрана значно збільшується.
Для захисту від бета-потоків доцільно застосовувати екрани, які виготовлені із матеріалів з малим атомним номером. У цьому випадку вихід гальмівного випромінювання невеликий. Звичайно, в якості екранів для захисту від бета-випромінювань використовують органічне скло, пластмасу, алюміній.
Відкритими називаються такі джерела іонізуючого випромінювання, при використанні яких можливе попадання радіоактивних речовин у навколишнє середовище. При цьому може відбуватися не тільки зовнішнє, але й додаткове внутрішнє опромінення персоналу. Це може відбутися при надходженні радіоактивних ізотопів у навколишнє робоче середовище у вигляді газів, аерозолів, а також твердих і рідких радіоактивних відходів. Джерелами аерозолів можуть бути не тільки виконувані виробничі операції, але й забруднені радіоактивними речовинами робочі поверхні, спецодяг і взуття.
Основні принципи захисту:
1) використання принципів захисту, що застосовуються при роботі з джерелами випромінювання у закритому вигляді;
2) герметизація виробничого устаткування з метою ізоляції процесів, що можуть стати джерелами надходження радіоактивних речовин у зовнішнє середовище;
3) заходи планувального характеру;
4) застосування санітарно-технічних засобів і устаткування, використання спеціальних захисних матеріалів;
5) використання засобів індивідуального захисту і санітарного опрацювання персоналу;
6) виконання правил особистої гігієни;
7) очищення від радіоактивних забруднень поверхонь будівельних конструкцій, апаратури і засобів індивідуального захисту.
Міри індивідуального захисту й особистої гігієни
Радіоактивне забруднення спецодягу, засобів індивідуального захисту та шкіри персоналу не повинно перевищувати припустимих рівнів, зазначених у Нормах радіаційної безпеки НРБ-76/87.
У випадку забруднення радіоактивними речовинами особистий одяг і взуття підлягають дезактивації під контролем служби радіаційної безпеки, а у випадку неможливості дезактивації – захороненню як радіоактивних відходів.
Захист від медичних діагностичних джерел опромінення
Рентгенорадіологічні процедури належать до найбільш ефективних методів діагностики захворювань людини. Це визначає подальше зростання застосування рентгено- і радіологічних процедур або використання їх у більш широких масштабах. Проте інтереси безпеки пацієнтів зобов’язують прагнути до максимально можливого зниження рівнів опромінення, оскільки вплив іонізуючого випромінювання в будь-якій дозі поєднаний з додатковим, відмінним від нуля ризиком виникнення віддалених стохастичних ефектів. У даний час з метою зниження індивідуальних і колективних доз опромінення населення за рахунок діагностики широко застосовуються організаційні і технічні заходи:
1) як виняток, необґрунтовані (тобто без доведень) дослідження;
2) зміна структури досліджень на користь тих, що дають менше дозове навантаження;
3) впровадження нової апаратури, оснащеної сучасною електронною технікою посиленого візуального зображення;
4) застосування екранів для захисту ділянок тіла, що підлягають дослідженню, і т. д.
Ці міри, проте, не вичерпують проблеми забезпечення максимальної безпеки пацієнтів і оптимального використання діагностичних методів. Система забезпечення радіаційної безпеки пацієнтів може бути повною й ефективною, якщо вона буде доповнена гігієнічними регламентами припустимих доз опромінення.

ЛЕКЦІЯ 9
Тема 3.1. Небезпеки виробничої сфери та побуту (електричний струм, електромагнітні випромінювання)
У результаті вивчення теми студент повинен уміти:
– давати поняття “електромагнітне поле”, “електромагнітне випромінювання”, “електричний струм”;
– класифікувати електромагнітні випромінювання;
– проаналізувати ступінь впливу електромагнітних випромінювань на організм людини;
– визначати методи захисту;
– охарактеризувати вплив електричного струму на організм людини;
– з’ясувати фактори, від яких залежить дія електричного струму на організм людини.
Після вивчення теми студент повинен зрозуміти, що людина живе в умовах підвищеної електромагнітної активності і постійно піддається негативному впливу електромагнітних полів. Знання фізичної сутності і природи дії електромагнітних випромінювань, електричного струму на людину дає можливість майбутнім фахівцям здійснити надійний захист людини від цих небезпечних факторів.
План
1. Дія електричного струму на організм людини.
2. Заходи та засоби захисту людини від дії електричного струму.
3. Джерела електромагнітного випромінювання.
4. Небезпечна дія електромагнітного випромінювання на організм людини.
5. Основні заходи та засоби захисту людини від дії електромагнітного випромінювання.
Контрольні питання
1. Дія електричного струму на організм людини.
2. Фактори електричного струму, що обумовлюють важкість ушкодження.
3. Захисні засоби, які використовуються в електроустановках від ураження електричним струмом.
4. Заходи, що забезпечують безпеку робіт в електроустановках.
5. Джерела електромагнітних випромінювань.
6. Вплив електромагнітних випромінювань на організм людини.
7. Захист людини від електромагнітних випромінювань.
8. Лазерне випромінювання, його вплив на організм людини та захист від нього.
Література
1. Бакка М.Т., Мельничук А.С., Сівко В.І. Охорона і безпека життєдіяльності людини: Конспект лекцій. – Житомир: Льонок, 1995. – 165 с.
2. Захарченко М.В., Орлов М.В., Голубєв А.К. та ін. Безпека життєдіяльності у повсякденних умовах виробництва, побуту та у надзвичайних ситуаціях: Навч. посібник. – К.: ІЗМИ, 1996. – 196 с.
3. Безопасность жизнедеятельности: Учебник для вузов / Под общей ред. С.В. Белова. – 2-е изд., испр. и доп. – М.: Высшая шк., 1999. – 448 с.
4. Хижняк М.І., Нагорна А.М. Здоров’я людини та екологія. – К.: Здоров’я, 1995. – 232 с.
5. Охрана труда в химической промышленности / Г.В. Макаров, А.Я. Васин, Л.К. Маринина и др. – М.: Химия, 1989. – 496 с.
6. Кушелев В.П. Основы техники безопасности на предприятиях химической промышленности. – М.: Химия, 1992. – 304 с.
7. Житецький В.Ц., Джигірей В.С., Мельников О.В. Основи охорони праці. – Вид. 2-е, стереотипне. – Львів: Афіша, 2000. – 347с.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.