Пиши Дома Нужные Работы

Обратная связь

Гамма-випромінювання. Взаємодії g- променів з речовиною

Якщо ядро збуджене і знаходиться в стані з більш високою енергією, то воно може самочинно перейти на більш низький енергетичний рівень, випустивши при цьому фотон. Відстані між енергетичними рівнями ядер складають величину порядку 1-2 МеВ. Тому енергії фотонів, які випускаються ядрами, в сотні і тисячі разів перевищують енергію фотонів атомних оболонок. Такі високо енергетичні фотони, які випускаються ядрами атомів, називаються гамма-фотонами або гамма-квантами.

Установлено, що гамма-випромінювання ядер не є самостійним видом радіоактивності. Цей вид випромінювання завжди супроводжується a- і b- випромінюванням. Гамма-кванти є продуктом випромінювання не материнських а дочірніх ядер. За проміжок часу 10-13 – 10-14с дочірнє ядро переходить у нормальний або у менш збуджений стан, випромінюючи при цьому g- кванти строго відповідних енергій. Тому спектр g- випромінювання має дискретний характер.

При g- випромінюванні масове число А і зарядове число Z не змінюються, тому таке випромінювання не описується жодним правилом зміщення. При радіоактивних розпадах різних ядер g- кванти можуть мати енергію від 10 кеВ до 5 МеВ .

Гамма-кванти мають нульову масу спокою, а тому не сповільнюються середовищем. При проходженні g- квантів через середовище вони можуть або поглинатись, або розсіюватись.

Гамма-промені відносяться до сильно проникаючого випромі-нювання в речовині. Проходячи крізь речовину γ- кванти взаємодіють з атомами, електронами і ядрами, у результаті чого їх інтенсивність зменшується.

Знайдемо закон ослаблення паралельного моноенергетичного пучка γ- квантів у плоскій мішені. Нехай на поверхню плоскої мішені перпендикулярно до неї падає потік γ- квантів Іо (рис.2.3). Ослаблення пучка в речовині викликається поглинанням і розсіюванням γ- квантів.



Рис.2.3

Розсіяний γ- квант втрачає частину своєї енергії при зіткненні з електронами і змінює напрямок свого поширення. На відстані х від зовнішньої поверхні потік γ- квантів ослабляється до величини І(х). У тонкому шарі мішені товщиною dx з потоку виводиться dІ γ- квантів. Величина dІ пропорційна потоку І(х)на поверхні шару і товщині шару dx:

. (3.2.3.1)

Знак мінус у правій частині рівняння показує, що в шарі потік зменшується на γ- квантів. Перепишемо це рівняння у вигляді:

. (3.2.3.2)

Коефіцієнт пропорційності μ називають повним лінійним коефіцієнтом ослаблення. Він має розмірність см-1 і чисельно дорівнює долі моноенергетичних γ- квантів, які вибувають з паралельного пучка на одиниці шляху випромінювання в речовині. Повний лінійний коефіцієнт ослаблення залежить від густини, порядкового номера речовини, а також від енергії γ- квантів:

. (3.2.3.3)

Помножимо ліву і праву частини рівняння (3.2.3.2) на dx, а потім проінтегруємо його в межах від 0 до х , одержимо:

. (3.2.3.4)

Після потенціювання одержимо закон Бугера ослаблення паралель-ного моно енергетичного пучка γ - квантів у речовині:

. (3.2.3.5)

При проходженні товщини речовини, рівної шару половинного ослаблення d1/2 , потік γ- квантів зменшиться у два рази. Повний лінійний коефіцієнт ослаблення і шар половинного ослаблення пов'язані між собою рівнянням:

. (3.2.3.6)

Повний лінійний коефіцієнт ослаблення пропорційний густини речовини. Якщо розділити його на густину, то одержимо масовий коефіцієнт ослаблення:

. (3.2.3.7)

Величину μm вимірюють у квадратних сантиметрах на грам (см2/г). Він чисельно дорівнює частині моноенергетичних γ- квантів, які вибувають з пучка при проходженні шару мішені товщиною 1г/см2.

Коефіцієнт μm залежить від порядкового номера хімічного елемента речовини й енергії γ- квантів:

. (3.2.3.8)

Речовини з однаковими ефективними порядковими номерами мають рівні масові коефіцієнти ослаблення. Так, масові коефіцієнти ослаблення води, кисню, азоту, повітря, вуглецю і живої тканини мало відрізняються один від одного, тому що їх ефективні порядкові номери близькі за величиною.

Після заміни закон ослаблення (3.2.3.5) перепишеться у вигляді:

(3.2.3.9)

де - маса в грамах шару речовини товщиною х і площею поперечного перерізу 1 см2.

Зменшення гамма-квантів в пучку обумовлюється трьома основними, незалежними процесами: фотоефектом, комптон-ефектом і ефектом утворення електрон-позитронної пари. Кожний з цих ефектів характеризує взаємодію γ- квантів відповідно з атомами, електронами і ядрами. Унаслідок цього і повний лінійний коефіцієнт ослаблення дорівнює сумі трьох незалежних лінійних коефіцієнтів - фотоефекта μф, комптон-ефекту μк й ефекту утворення пара μп :

. (3.2.3.10)

Кожний із коефіцієнтів по-різному залежить від порядкового номера елемента в таблиці Менделєєва й енергії гамма-квантів.

Фотоефект. Фотоефектом називається така взаємодія γ- кванта з атомом, при якому γ - квант поглинається повністю (зникає), а з атома виривається електрон. Одна частина енергії γ- кванта Ej витрачається на розрив зв'язку електрона з ядром εе-, інша частина перетворюється в кінетичну енергію електрона Eе-:

. (3.2.3.11)

Перша особливість фотоефекта полягає в тому, що він відбувається тільки тоді, коли енергія γ - кванта більша за енергію зв'язку електрона в оболонці атома.

Фотоелектрон рухається майже перпендикулярно до напрямку поширення поглинутого γ- кванта (рис. 2.3). Рух фотоелектрона збігається з напрямком коливання електричної напруженості електромагнетного поля. Це показує, що фотоелектрон виривається з атома електричними силами.

Друга особливість фотоефекту - збільшення фотоелектричного поглинання γ- квантів з ростом енергії зв'язку електронів в атомі. Фотоефект практично не спостерігається на слабко зв'язаних електронах атома. При енергії γ- кванта >>εe- їх можна вважати вільними. Такий електрон не може поглинати γ- квант. Це випливає із законів збереження енергії й імпульсу:

. (3.2.3.12)

Фотоефект в основному відбувається на К- і L - оболонках атомів. Згідно з другим рівнянням вільний електрон, поглинувши γ- квант, повинен був би рухатися зі швидкістю, у два рази більшою за швидкість світла, що заперечує теорія відносності.

Лінійний коефіцієнт ослаблення фотоефекту μф різко зменшується із збільшенням енергії, і при енергіях понад 10 МеВ у свинці практично не виникають фотоелектрони.

Комптон-ефект. На слабко зв'язаних атомних електронах відбувається розсіювання γ-квантів, яке називається комптон- ефектом. Взаємодія γ-кванта з електроном у комптон-ефекті це пружне зіткнення двох кульок з масами і mе (див. рис.3.2.3).

У кожному пружному зіткненні γ - квант передає частину своєї енергії електрону і розсіюється. Оскільки розсіювання γ - квантів залежить від концентрації атомних електронів Ne~z, то і комптон - ефект визначається порядковим номером речовини z. Розсіювання γ – квантів відбувається головним чином на слабо зв’язаних електронах зовнішніх оболонок атомів.

Рис. 3.2.3

Лінійний коефіцієнт ослаблення комптон - ефекту μк пропорційний відношенню z/Ej. Тому зі збільшенням енергії доля розсіяних γ - квантів зменшується.

У свинці комптон - ефект починає переважати над фотоефектом в енергетичній області Ej > 0.5 МеВ (див. рис.2.4). Зменшення коефіцієнта μк із збільшенням енергії γ - квантів більш плавне, ніж коефіцієнта μф . Тому в області енергії Ej > 0.5 МеВ у свинці утвориться більше комптон - електронів, ніж фотоелектронів. Комптон - ефект стає незначним при енергіях понад 50 - 100 МеВ.

Утворення електрон-позитронних пар. Гамма - квант у полі ядра може утворити пару частинок: електрон і позитрон (див. рис.3.2.4). Вся енергія γ - кванта перетворюється в енергію спокою електрона й позитрона 2mеc2 і в кінетичні енергії цих частинок Eе і Eе-. Умова утворення електрон-позитронної пари знаходиться із закону збереження енергії:

hv =2mec2+Ee-+Ee+ . (3.2.3.13)

Пари частинок виникають тільки в тому випадку, якщо енергія γ - кванта перевищує подвоєну масу спокою електрона, рівну 1.02 МеВ. Поза полем ядра або, скажимо електрисним полем зарядженої частинки, γ - кванту заборонено перетворюватися в пару частинок, тому що в цьому випадку порушується закон збереження імпульсу. Це випливає, наприклад, із граничної умови утворення пари. Гамма - квант з енергією 1.02 МеВ енергетично може породити електрон і позитрон. Однак їх імпульс буде дорівнювати нулю, тоді як імпульс γ - кванта дорівнює hv/c, тобто не може дорівнювати нулю.

У полі ядра імпульс і енергія γ - кванта розподіляються між електроном, позитроном і ядром без порушень законів збереження енергії й імпульсу. Маса ядра незрівнянно більша маси електрона і позитрона, тому воно одержує дуже малу частку енергії. В цьому випадку вся енергія γ – кванта перетворюється в енергію електрона й позитрона. Лінійний коефіцієнт ослаблення, пов’язаний з утворенням електрон-позитронної пари μп пропорційний z2/lnEj . Цей ефект помітний у важких речовинах при великих енергіях. Коефіцієнт μп стає відмінним від нуля при граничній енергії Ej = 1.02 МеВ. Починаючи з енергії 10 МеВ основне поглинання γ - квантів відбувається в полі ядра. Повний лінійний коефіцієнт ослаблення μ як сума трьох коефіцієнтів із збільшенням енергії спочатку зменшується (див. рис.3.2.4) приймаючи мінімальне значення при енергії 3 МеВ, а потім збільшується.

Такий хід кривої пояснюється тим, що при низьких енергіях залежність μ(Ej) обумовлюється фотоефектом і комптон- ефектом, а вже при енергіях більших за 3 МеВ, у коефіцієнт μ основний внесок дає ефект утворення електрон-позитронної пари. Свинець найбільш прозорий для γ - квантів з енергією близько 3 МеВ.

Рис. 3.2.4

Взаємодія випромінювання з речовиною відбувається в одних ефектах поглинанням γ - квантів (фотоефект, утворення пар), в інших розсіюванням (комптон - ефект). Тому повний лінійний коефіцієнт часто поділяють на дві складові:

, (3.2.3.14)

де μа = μфп - лінійний коефіцієнт поглинання; μs = μк - лінійний коефіцієнт розсіювання.

 

Використовуючи лінійний коефіцієнт поглинання легко розрахувати енергію випромінювання Е, поглинену в одиниці об'єму речовини. Якщо потік моноенергетичних γ - квантів з енергією Ej дорівнює Ф, то:

. (3.2.3.15)

Процес перетворення g-кванта в електрон-позитронну пару записують так:

(3.2.3.16)

 

де - електрон; - позитрон.

Зворотний процес взаємодії позитрона й електрона називаються анігіляцією

(3.2.3.17)

 

При проходженні g- променів у речовині наряду із фотоефектом, комптонівським розсіюванням і утворенням електрон-позитронних пар, спостерігаються також резонансні явища. Якщо ядро опромінювати g- квантами з енергією, яка дорівнює різниці одного із збуджених нуклонних рівнів і основного енергетичного стану ядра, то спостерігається резонансне поглинання g-випромінювання ядрами. Ядра здатні поглинати енергію g-квантів в тих випадках, коли вони можуть випромінювати такі ж g-кванти у випадку збудженого стану. Це явище вперше спостерігав у 1958 році Мессбауер, яке на його честь було названо ефектом Мессбауера. Явище Мессбауера має досить широке використання в медичній діагностиці.

Ядерні реакції






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.