Пиши Дома Нужные Работы

Обратная связь

Перестановки, сочетания и размещения без повторений

Задачи по комбинаторике. Примеры решений

http://www.mathprofi.ru/zadachi_po_kombinatorike_primery_reshenij.html

Автор: Емелин Александр

Будут рассмотрены элементы комбинаторики, которые потребуются для дальнейшего изучения теории вероятностей.

Комбинаторика – самостоятельный раздел высшей математики

В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность) и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

 

Перестановки, сочетания и размещения без повторений

Начнём с хвоста заголовка – что значит «без повторений»? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различныхобъектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

яблоко / груша / банан

Вопрос первый: сколькими способами их можно переставить?



Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша
груша / яблоко / банан
груша / банан / яблоко
банан / яблоко / груша
банан / груша / яблоко

Итого: 6 комбинаций или 6 перестановок.

Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

Пожалуйста, откройте справочный материал Основные формулы комбинаторики(методичку удобно распечатать) и в пункте №2 найдите формулу количества перестановок.

Никаких мучений – 3 объекта можно переставить Р3=3!=6 способами.

Вопрос второй: сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! =)

а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний:

Запись С13 в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша;
яблоко и банан;
груша и банан.

Количество комбинаций легко проверить по той же формуле:

Запись С23 понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки:
способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы одинфрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:
способами можно выбрать хотя бы один фрукт.

Читатели, внимательно изучившие вводный урок по теории вероятностей, уже кое о чём догадались. Но о смысле знака «плюс» позже.

Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

Вопрос третий: сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша;
яблоко и банан;
груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
яблоком можно угостить Дашу, а грушей – Наташу;
либо наоборот – груша достанется Даше, а яблоко – Наташе.

И такая перестановка возможна для каждой пары фруктов.

В данном случае работает формула количества размещений

Она отличается от формулы тем, что учитывает не только количество способов, которым можно выбрать несколько объектов, но и все перестановки объектов в каждойвозможной выборке. Так, в рассмотренном примере, важно не только то, что можно просто выбрать, например, грушу и банан, но и то, как они будут распределены (размещены) между Дашей и Наташей.

В простейших случаях можно пересчитать все возможные комбинации вручную, но чаще всего это становится неподъемной задачей, именно поэтому и нужно понимать смысл формул.

Также напоминаю, что сейчас речь идёт о множестве с различнымиобъектами, и если яблоко/грушу/банан заменить на 3 яблока или даже на 3 очень похожих яблока, то в контексте рассмотренной задачи они всё равно будут считаться различными.

Остановимся на каждом виде комбинаций подробнее:

Перестановки

Перестановками называют комбинации, состоящие из одних и тех же nразличныхобъектов и отличающиеся только порядком их расположения. Количество всех возможных перестановок выражается формулой Pn=n!

Отличительной особенностью перестановок является то, что в каждой из них участвует ВСЁ множество, то есть, все n объектов. Например, дружная семья:

Задача 1

Сколькими способами можно рассадить 5 человек за столом?

Решение: используем формулу количества перестановок:

P5=5!=120

Ответ: 120 способами

Невероятно, но факт. Обратите внимание, что здесь не имеет значения круглый ли стол, квадратный, или вообще все люди сели встали, легли на скамейку вдоль одной стены – важно лишь количество объектов и их взаимное расположение. Помимо перестановок людей, часто встречается задача о перестановках различных книг на полке, но это было бы слишком просто даже для чайника:

Задача 2

Сколько четырёхзначных чисел можно составить из четырёх карточек с цифрами 0, 5, 7, 9?

Для того чтобы составить четырёхзначное число нужно задействовать все четыре карточки(цифры на которых различны!), и это очень важная предпосылка для применения формулы Очевидно, что, переставляя карточки, мы будем получать различные четырёхзначные числа, … стоп, а всё ли тут в порядке? ;-)

Хорошенько подумайте над задачей! Вообще, это характерная черта комбинаторных и вероятностных задач – в них НУЖНО ДУМАТЬ. И зачастую думать по-житейски, как, например, в разборе вступительного примера с фруктами.

Решение и ответ в конце урока.

Сочетания

В учебниках обычно даётся лаконичное и не очень понятное определение сочетаний, поэтому, в моих устах формулировка будет не особо рациональной, но, надеюсь, доходчивой:

Сочетаниями называют различные комбинации из объектов, которые выбраны из множества различных объектов, и которые отличаются друг от друга хотя бы одним объектом. Иными словами, отдельно взятое сочетание – это уникальная выборка из элементов, в которой не важен их порядок (расположение). Общее же количество таких уникальных сочетаний рассчитывается по формуле .

Задача 3

В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Решение: прежде всего, снова обращаю внимание на то, что по логике условия, детали считаются различными– даже если они на самом деле однотипны и визуально одинаковы
(в этом случае их можно, например, пронумеровать)
.

В задаче речь идёт о выборке из 4 деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:

Здесь, конечно же, не нужно ворочать огромные числа .
В похожей ситуации я советую использовать следующий приём: в знаменателе выбираем наибольший факториал (в данном случае ) и сокращаем на него дробь. Для этого числитель следует представить в виде . Распишу очень подробно:

способами можно взять 4 детали из ящика.

Ещё раз: что это значит? Это значит, что из набора 15 различных деталей можно составитьодну тысячу триста шестьдесят пять уникальных сочетания 4 деталей. То есть, каждая такая комбинация из четырёх деталей будет отличаться от других комбинаций хотя бы одной деталью.

Ответ: 1365 способами

Формуле необходимо уделить самое пристальное внимание, поскольку она является «хитом» комбинаторики. При этом полезно понимать и без всяких вычислений записывать «крайние» значения: . Применительно к разобранной задаче:

– единственным способом можно взять ни одной детали;
способами можно взять 1 деталь (любую из пятнадцати);
способами можно взять 14 деталей (при этом какая-то одна из 15 останется в ящике);
– единственным способом можно взять все пятнадцать деталей.

Рекомендую внимательно ознакомиться с биномом Ньютона и треугольнтком Паскаля, по которому, к слову, очень удобно выполнять проверку вычислений Cnm при небольших значениях «эн».

Задача 4

Сколькими способами из колоды в 36 карт можно выбрать 3 карты?

Это пример для самостоятельного решения. Чем приятны многие комбинаторные задачи, так это краткостью – главное, разобраться в сути. И суть, бывает, открывается с различных сторон. Разберём весьма поучительный пример:

Задача 4*

В шахматном турнире участвует человек и каждый с каждым играет по 1-й партии. Сколько всего партий сыграно в турнире?

Поскольку я сам играю в шахматы и неоднократно принимал участие в круговых турнирах, то сразу же сориентировался по турнирной таблице размером клеток, в которой результат каждой партии учитывается дважды и, кроме того, затушёвываются клетки «главной диагонали» (т.к. участники не играют сами с собой). Исходя из проведённых рассуждений, общее количество сыгранных партий рассчитывается по формуле .

Здесь можно руководствоваться самыми что ни на есть банальными сочетаниями:
различных пар можно составить из соперников (кто играет белыми, кто чёрными – не важно).

Эквивалентной является задача о рукопожатиях: в отделе работает мужчин и каждый с каждым здоровается за руку, сколько рукопожатий они совершают? К слову, шахматисты тоже пожимают друг другу руку перед каждой партией.

Ну а вывода тут два:
– во-первых, не всё очевидное – очевидно;
– и во-вторых, не бойтесь решать задачи «нестандартно»!

Большое спасибо за ваши письма, они помогают улучшить качество учебных материалов!

Размещения

Или «продвинутые» сочетания. Размещениями называют различные комбинации из m объектов, которые выбраны из множества n различных объектов, и которые отличаются друг от друга как составом объектов в выборке, так и их порядком. Количество размещений рассчитывается по формуле

Что наша жизнь? Игра:

Задача 5

Боря, Дима и Володя сели играть в «очко». Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

Решение: ситуация похожа на Задачу 4, но отличается тем, что здесь важно не только то, какие три карты будут извлечены из колоды, но и то, КАК они будут распределены между игроками. По формуле размещений:

способами можно раздать 3 карты игрокам.

Есть и другая схема решения, которая, с моей точки зрения, даже понятнее:

способами можно извлечь 3 карты из колоды.

Теперь давайте рассмотрим, какую-нибудь одну из семи тысяч ста сорока комбинаций, например: король пик, 9 червей , 7 червей. Выражаясь комбинаторной терминологией, эти 3 карты можно «переставить» между Борей, Димой и Володей P3=3!=6 способами:

КП, 9Ч, 7Ч;
КП, 7Ч, 9Ч;
9Ч, КП, 7Ч;
9Ч, 7Ч, КП;
7Ч, КП, 9Ч;
7Ч, 9Ч, КП.

И аналогичный факт справедлив для любого уникального набора из трёх карт. А таких наборов, не забываем, мы насчитали C363=7140. Найденное количество сочетаний следует умножить на шесть:

способами можно сдать по одной карте трём игрокам.

По существу, получилась наглядная проверка формулы , окончательный смысл которой мы проясним в следующем параграфе.

Ответ: 42840

Возможно, у вас остался вопрос, а кто же раздавал карты? …Наверное, преподаватель =)
И чтобы никому не было обидно, в следующей задаче примет участие вся студенческая группа:

Задача 6

В студенческой группе 23 человека. Сколькими способами можно выбрать старосту и его заместителя?

Задача о «размещении» должностей в коллективе встречается очень часто и является самым настоящим баяном. Краткое решение и ответ в конце урока.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.