Пиши Дома Нужные Работы

Обратная связь

Растворы. Химическая идентификация

 

Цель: развитие представлений о современных методах химического анализа.

 

Вопросы:

1. Растворы и их особенности.

2. Химическая идентификация.

3. Химические процессы.

4. Химия экстремальных состояний.

 

Блок базовых понятий: химический процесс (реакция), растворы, химическая идентификация, сольватация, гидратация.

Растворы и их особенности

 

Если в сосуд с водой поместить кристаллы поваренной соли, сахара или перманганата калия (марганцовки), то мы можем наблюдать, как количество твердого вещества постепенно уменьшается. При этом вода, в которую были добавлены кристаллы, приобретает новые свойства: у нее появляется соленый или сладкий вкус (в случае марганцовки появляется малиновая окраска), изменяется плотность, температура замерзания и т.д. Полученные жидкости уже нельзя назвать водой, даже если они неотличимы от воды по внешнему виду (как в случае с солью и сахаром). Это – растворы. Растворы не отстаиваются и сохранятся все время однородными. Если раствор профильтровать через самый плотный фильтр, то ни соль, ни сахар, ни марганцевокислый калий не удается отделить от воды. Следовательно, эти вещества в воде раздроблены до наиболее мелких частиц – молекул. Молекулы могут опять собраться в кристаллы только тогда, когда мы выпарим воду. Таким образом, растворы – это молекулярные смеси.

Растворами называются однородные молекулярные смеси из двух или более веществ.

Растворы играют большую роль в природе и практической деятельности человека. Почвообразовательные процессы, формирование геологических пород, физиологические процессы в растительном и животном мире, процессы технологического типа в различных производствах в основном протекают в растворах.



Любой раствор состоит из растворителя и растворенного вещества. В приведенных примерах растворителем является вода. Но не всегда обязательно вода является растворителем. Например, можно получить раствор воды в серной кислоте. Здесь растворителем будет кислота. Можно приготовить и растворы кислоты в воде.

Из двух или нескольких компонентов раствора растворителем является тот, который взят в большем количестве и имеет то же агрегатное состояние, что и раствор в целом.

Существуют растворы не только жидкие, но и газовые и даже твердые. Например, воздух – раствор кислорода и еще нескольких газов в азоте. Сплавы металлов представляют собой твердые растворы металлов друг в друге. Газы, как мы уже знаем, способны растворяться в воде.

Для газов, взаимодействие между молекулами которых мало, свойственно отсутствие определенной структуры и хаотичность движения молекул смешиваемых веществ. Газовые растворы при обычных давлениях и температурах принято рассматривать как механическую смесь, каждый компонент которой сохраняет свои индивидуальные физические и химические свойства. При значительных температурах плотность газов становится сравнимой с плотностью жидкостей, а газовые смеси по своим свойствам приближаются к растворам. Например, воздух можно считать раствором при значительном давлении, когда его состояние приближается к жидкому.

И все же жидкие растворы являются самым широко распространенным типом растворов, к данному типу относятся все природные воды.

Чтобы понять механизм растворения понаблюдаем, как растворяется добавленный в чай сахар. Если чай холодный, то сахар растворяется медленно. Наоборот, если чай горячий и размешивается ложечкой, то растворение происходит быстро.

Попадая в воду, молекулы сахара, находящиеся на поверхности кристаллов сахарного песка, образуют с молекулами воды донорно-акцепторные (водородные) связи. При этом с одной молекулой сахара связывается несколько молекул воды. Тепловое движение молекул воды заставляет связанные с ними молекулы сахара отрываться от кристалла и переходить в толщу молекул растворителя (рис. 9.1).

Рис. 9.1. Молекулы сахара (белые кружочки), находящиеся на поверхности кристалла сахара, окружены молекулами воды (темные кружочки).

Между молекулами сахара и воды возникают водородные связи, благодаря которым молекулы сахара отрываются от поверхности кристалла. Молекулы воды, не связанные с молекулами сахара, на рисунке не показаны.

Молекулы сахара, перешедшие из кристалла в раствор, могут передвигаться по всему объему раствора вместе с молекулами воды благодаря тепловому движению. Это явление называется диффузией. Диффузия происходит медленно, поэтому около поверхности кристаллов находится избыток уже оторванных от кристалла, но еще не диффундировавших в раствор молекул сахара.

Они мешают новым молекулам воды подойти к поверхности кристалла, чтобы связаться с его молекулами водородными связями. Если раствор перемешивать, то диффузия происходит интенсивнее и растворение сахара идет быстрее. Молекулы сахара распределяются равномерно и раствор становится одинаково сладким по всему объему.

Растворение – это самопроизвольный процесс, сопровождающийся уменьшением внутренней энергии вещества.

Количество молекул, способных перейти в раствор, часто ограничено. Молекулы вещества не только покидают кристалл, но и вновь присоединяются к кристаллу из раствора. Пока кристаллов относительно немного, больше молекул переходит в раствор, чем возвращается из него – идет растворение. Но если растворитель находится в контакте с большим количеством кристаллов, то число уходящих и возвращающихся молекул становится одинаковым и для внешнего наблюдателя растворение прекращается. Это означает, что внутренняя энергия системы растворитель-растворяющееся вещество становиться минимальной, наступает равновесие, т.е. скорость растворения равна скорости кристаллизации растворенного вещества. Например, при комнатной температуре мы не можем растворить в 100 мл воды более 200 г сахара или более 35,9 г поваренной соли. В таких случаях говорят, что раствор стал насыщенным.

Раствор, в котором данное вещество при данной температуре уже больше не растворяется, называется насыщенным.

В насыщенном растворе при данной температуре содержится максимально возможное количество растворенного вещества. В реальном растворе, где есть тепловое движение молекул, молекулы продолжают “трудиться”, транспортируя частицы растворенного вещества из кристалла в раствор и обратно. Такое состояние называется динамическим равновесием (равновесием в движении). В связи с этим можно дополнить определение насыщенного раствора: Насыщенным называется такой раствор, который находится в динамическом равновесии с избытком растворенного вещества. Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.

Если в 100 г воды растворяется более 10 г вещества, то такое вещество называют хорошо растворимым. Если растворяется менее 1 г вещества – вещество малорастворимо. Наконец, вещество считают практически нерастворимым, если в раствор переходит менее 0,01 г вещества. Абсолютно нерастворимых веществ не бывает. Даже когда мы наливаем воду в стеклянный сосуд, очень небольшая часть молекул стекла неизбежно переходит в раствор.

Растворимость, выраженная при помощи массы вещества, которое может раствориться в 100 г воды при данной температуре, называют также коэффициентом растворимости.

Главное, что в самом растворе вещество находится в качественно новом состоянии – в виде гидратов. Поэтому растворение следует считать не физическим, а физико-химическим процессом. С этой точки зрения более полным определением раствора является следующее: Растворами называют термодинамически устойчивые физико-химические однородные (однофазные) смеси переменного состава, состоящие из двух или нескольких веществ и продуктов их взаимодействия.

Научное представление о природе растворов было сформулировано в 80-е годы XIX столетия русским химиком Д.И. Менделеевым. Оно состоит в том, что растворы – это смеси непрочных соединений, находящихся в состоянии частичной диссоциации. Дальнейшее развитие теории растворов привело к появлению понятий сольватации и гидратации. Термин «сольватация» в переводе с латыни solve – раствор, означает совокупность процессов, протекающих при растворении одного (или нескольких) вещества в другом. Растворение веществ в воде получило название гидратации. Как результат гидратации возникают гидраты, а сольватации – сольваты.

 

Химическая идентификация

 

Под идентификацией понимают процесс отожествления или установления совпадений чего-либо с чем-либо. В химии идентификацией называют процесс установления химического состава вещества. Этими вопросами занимается аналитическая химия, которая изучает количественный и качественный состав веществ.

Качественный анализ позволяет установить из каких химических элементов, ионов, групп атомов и молекул состоит анализируемое вещество. Количественный анализ направлен на установление количественных соотношений составных частей химических соединений, растворов или смесей веществ. Качественный анализ всегда предшествует количественному в процессе исследования состава вещества.

Методы идентификации разделяют на три группы: химические, физические и физико-химические.

К химическим методам анализа веществ относятся методы, основанные на химических реакциях, протекающих в растворах.

Наибольшее значение имеют следующие реакции: реакции нейтрализации; реакции комплексообразования; реакции осаждения; реакции окисления, восстановления; реакции выделения и поглощения газов.

В результате химических превращений образуются новые соединения, обладающие специфическими свойствами: физическим состоянием (жидкость, газ, осадок); растворимостью в воде; характерными качествами (цвет, запах, вкус и др.). Такие реакции носят название качественных на соответствующие ионы, группы атомов или молекул, что позволяет определить состав вещества.

Количественные соотношения ионов, атомов и их групп определяют с помощью гравиметрического и титриметрического методов анализа.

Гравиметрический метод в своей основе имеет закон сохранения массы веществ при химических превращениях. Он состоит в измерении массы определяемого вещества или его составных частей, выделяемых в чистом виде либо в виде точно известного состава.

Тиириметрический метод основан на титровании, которое состоит в смешивании точно измеренного объема анализируемого раствора с добавленным стандартным раствором реагента при одновременном наблюдении за изменениями в системе. На основе закона эквивалентов для растворов электролитов по объему стандартного раствора реагента, израсходованному на полное протекание реакции вычисляется содержание определяемого вещества.

Физико-химические методы анализа построены на измерении физических свойств, которые можно обнаружить в результате химических реакций. Широкое распространение получил метод фотоколориметрии, использующий способность окрашенного определяемого вещества поглощать электромагнитное излучение видимой части спектра. На основе величины оптической плотности, изменяющейся в процессе химической реакции, можно определить концентрацию поглощающего вещества.

Большую роль играют такие физические методы как: спектральные и электрохимические.

Спектральные методы имеют следующие разновидности – рентгеновская спектроскопия; инфракрасная спектроскопия.

К электрохимическим методам относятся потенциометрия, кондуктометрия.

Особую роль в химической идентификации играет качественный анализ. Существует два способа химического анализа качественного состава вещества- сухой и мокрый.

Качественный анализ сухого вещества осуществляется следующими методами: а) испытание образца на окрашивание пламени; б) методом образования окрашенных перлов; в) термическим разложением вещества (анализ выделенных продуктов).

Реакции в качественном химическом анализе очень часто проводят в растворах, что позволяет назвать данные методы мокрыми. Растворы полученные с использованием определенного растворителя (воды, кислоты и др. растворителей) анализируют при помощи качественных реакций или реагентов. В качестве реагентов используют вещества, которые вызывают характерные превращения исследуемых веществ.

В зависимости от количества вещества необходимого для анализа различают макроанализ (проба более 100 мг); полумикроанализ (проба от 10 до 100 мг); микроанализ (проба менее 10 мг); ультрамикроанализ (проба менее 0,01 мг).

В результате качественных реакций могут происходить превращения, которые приводят к образованию нерастворимых соединений; характерному окрашиванию исследуемого раствора; образование газообразных веществ с характерными свойствами.

Аналитические реакции проводят с реактивами, образующими характерные прдукты реакции, которые легко уствновить. Зная состав образовавшегося продукта реакции, делают выводы о наличии в составе анализируемого вещества того или иного элемента.

Существует также метод качественных реакций на ионы. Он основан на том, что избыток ионов какого-либо вещества обнаруживается с помощью индикаторов, способных менять свою окраску.

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.