Пиши Дома Нужные Работы

Обратная связь

Отведение и запись электроэнцефалограммы

Электроэнцефалография

Электроэнцефалография - метод исследования головного мозга с помощью регистрации разности электрических потенциалов, возникающих в процессе его жизнедеятельности. Регистрирующие электроды располагают в определённых областях головы так, чтобы на записи были представлены все основные отделы мозга.

Получаемая запись - электроэнцефалограмма (ЭЭГ) - является суммарной электрической активностью многих миллионов нейронов, представленной преимущественно потенциалами дендритов и тел нервных клеток: возбудительными и тормозными постсинаптическими потенциалами и частично - потенциалами действия тел нейронов и аксонов. Таким образом, ЭЭГ отражает функциональную активность головного мозга. Наличие регулярной ритмики на ЭЭГ свидетельствует, что нейроны синхронизуют свою активность.

В норме эта синхронизация определяется главным образом ритмической активностью пейсмейкеров (водителей ритма) неспецифических ядер таламуса и их таламокортикальных проекций.

Поскольку уровень функциональной активности определяется неспецифическими срединными структурами (ретикулярной формацией ствола и переднего мозга) , эти же системы определяют ритмику, внешний вид, общую организацию и динамику ЭЭГ.

Симметричная и диффузная организация связей неспецифических срединных структур с корой определяет билатеральную симметричность и относительную однородность ЭЭГ для всего мозга (рис. 6-1 и 6-2).

МЕТОДИКА

В обычной практике ЭЭГ отводят с помощью электродов, расположенных на интактных покровах головы. Электрические потенциалы усиливают и регистрируют. В электроэнцефалографах предусмотрено 16-24 и более идентичных усилительно-регистрирующих блоков (каналов) , позволяющих одномоментно записывать электрическую активность от соответствующего количества пар электродов, установленных на голове пациента. Современные электроэнцефалографы создают на базе компьютеров. Усиленные потенциалы преобразуют в цифровую форму; непрерывная регистрация ЭЭГ отображается на мониторе и одновременно записывается на диск.



После обработки ЭЭГ может быть распечатана на бумаге. Электроды, отводящие потенциалы, представляют собой металлические пластины или стержни различной формы с диаметром контактной поверхности 0,5-1 см. Электрические потенциалы подаются на входную коробку электроэнцефалографа, имеющую 20-40 и более пронумерованных контактных гнёзд, с помощью которых к аппарату можно под соединить соответствующее количество электродов. В современных электроэнцефалографах входная коробка объединяет коммутатор электродов, усилитель и аналога-цифровой преобразователь ЭЭГ. Из входной коробки преобразованный сигнал ЭЭГ подают в компьютер, с помощью которого производят управление функциями при бора, регистрацию и обработку ЭЭГ.

Рис. 6-1 . Восходящая ретикуло-кортикальная неспецифическая система регуляции уровня функциональной активности мозга: Д1 и Д2 - десинхронизующие активирующие системы среднего и переднего мозга соответственно; С1 и С2 - синхронизующие тормозящие сомногенные системы продолговатого мозга и моста и неспецифических ядер промежуточного мозга соответственно.

Рис. 6-2. ЭЭГ взрослого бодрствующего человека: регистрируется регулярный α-ритм, модулированный в веретёна, лучше всего выраженный в затылочных отделах; реакция активации на вспышку света

ЭЭГ регистрирует разность потенциалов между двумя точками головы. Соответственно на каждый канал электроэнцефалографа подают напряжения, отведённые двумя электродами: одно на "Вход 1" , другое на "Вход 2" канала усиления.

Многоконтактный коммутатор отведений ЭЭГ позволяет коммутировать электроды по каждому каналу в нужной комбинации. Установив, например, на каком-либо канале соответствие затылочного электрода гнезду входной коробки "1" , а височного - гнезду коробки "5" , получают тем самым возможность регистрировать по этому каналу разность потенциалов между соответствующими электродами. Перед началом работы исследователь набирает с помощью соответствующих программ несколько схем отведений, которые и используют при анализе полученных записей. Для задания полосы про пускания усилителя используют аналоговые и цифровые фильтры высокой и низкой частоты. Стандартная полоса про пускания при записи ЭЭГ - 0,5-70 Гц.

Отведение и запись электроэнцефалограммы

Регистрирующие электроды располагают так, чтобы на многоканальной записи были представлены все основные отделы мозга, обозначаемые начальными буквами их латинских названий. В клинической практике используют две основные системы отведений ЭЭГ: международную систему "10-20" (рис. 6-3) и модифицированную схему с уменьшенным количеством электродов (рис. 6-4). При необходимости получения более детальной картины ЭЭГ предпочтительна схема "10-20".

Рис. 6-3. Международная схема расположения электродов " 1 0-20". Буквенные индексы означают: О - затылочное отведение; Р - теменное отведение; С - центральное отведение; F - лобное отведение; т - височное отведение. Цифровые индексы уточняют положение электрода внутри соответствующей области.

Рис. 6-4. Схема регистрации ЭЭГ при моно· полярном отведении ( 1 ) с референтным электродом (R) на мочке уха и при биполярных отведениях (2). В системе с уменьшенным количеством отведений буквенные индексы означают: О - затылочное отведение; Р - теменное отведение; С - центральное отведение; F - лобное отведение; Та - переднее височное отведение, Тр - заднее височное отведение. 1 : R - напряжение под референтным ушным электродом; О - напряжение под активным электродом , R-O - запись, получаемая при монополярном отведении от правой затылочной области. 2: Тр - напряжение под электродом в области патологического очага; Та - напряжение под электродом, стоящим над нормальной мозговой тканью; Та-Тр, Тр-О и Ta-F - записи, получаемые при биполярном отведении от соответствующих пар электродов.

Референтным называют такое отведение, когда на "вход 1" усилителя подаётся потенциал от электрода, стоящего над мозгом, а на "вход 2" - от электрода на удалении от мозга. Электрод, расположенный над мозгом, чаще всего называют активным. Электрод, удалённый от мозговой ткани, носит название референтного.

В качестве такового используют левую (A1) и правую (А2) мочки уха. Активный электрод подсоединяют к "входу 1" усилителя, подача на который отрицательного сдвига потенциала вызывает отклонение регистрирующего пера вверх.

Референтный электрод подключают к "входу 2" . В некоторых случаях в качестве референтного электрода используют отведение от двух закороченных между собой электродов (АА), расположенных на мочках ушей. Поскольку на ЭЭГ регистрируется разность потенциалов между двумя электродами, на положение точки на кривой будут в равной мере, но в противоположном направлении влиять изменения потенциала под каждым из пары электродов. В референтном отведении под активным электродом генерируется переменный потенциал мозга. Под референтным электродом, находящимся вдали от мозга, имеется постоянный потенциал, который не проходит в усилитель переменного тока и не влияет на картину записи.

Разность потенциалов отражает без искажения колебания электрического потенциала, генерируемого мозгом под активным электродом. Однако область головы между активным и референтным электродами составляет часть электрической цепи "усилитель-объект", и наличие на этом участке достаточно интенсивного источника потенциала, расположенного асимметрично относительно электродов, будет существенно отражаться на показаниях. Следовательно, при референтном отведении суждение о локализации источника потенциала не вполне надёжно.

Биполярным называют отведение, при котором на "вход 1" и "вход 2" усилителя подсоединяют электроды, стоящие над мозгом. На положение точки записи ЭЭГ на мониторе в одинаковой мере влияют потенциалы под каждым из пары электродов, и регистрируемая кривая отражает разность потенциалов каждого из электродов.

Поэтому суждение о форме колебания под каждым из них на основе одного биполярного отведения оказывается невозможным. В то же время анализ ЭЭГ, зарегистрированных от нескольких пар электродов в различных комбинациях, позволяет выяснить локализацию источников потенциалов, составляющих компоненты сложной суммарной кривой, получаемой при биполярном отведении.

Например, если в задней височной области присутствует локальный источник медленных колебаний (Тр на рис. 6-4) , при подсоединении к клеммам усилителя переднего и заднего височных электродов (Та, Тр) получается запись, содержащая медленную составляющую, соответствующую медленной активности в задней височной области (Тр) , с наложенными на неё более быстрыми колебаниями, генерируемыми нормальным мозговым веществом передней височной области (Та).

Для выяснения вопроса о том, какой же электрод регистрирует эту медленную составляющую, на двух дополнительных каналах коммутированы пары электродов, в каждой из которых один представлен электродом из первоначальной пары, то есть Та или Тр, а второй соответствует какому-либо не височному отведению, например F и О.

Понятно, что во вновь образуемой паре (Тр-О) , включающей задний височный электрод Тр, находящийся над патологически изменённым мозговым веществом, опять будет присутствовать медленная составляющая. В паре, на входы которой подана активность от двух электродов, стоящих над относительно интактным мозгом (Та-F) , будет регистрироваться нормальная ЭЭГ. Таким образом, в случае локального патологического коркового фокуса подключение электрода, стоящего над этим фокусом, в паре с любым другим приводит к появлению патологической составляющей на соответствующих каналах ЭЭГ. Это и позволяет определить локализацию источника патологических колебаний.

Дополнительный критерий определения локализации источника интересующего потенциала на ЭЭГ - феномен извращения фазы колебаний. Если подсоединить на входы двух каналов электроэнцефалографа три электрода следующим образом (рис. 6-5): электрод 1 - к "входу 1 " , электрод 3 - к "входу 2" усилителя.

Рис. 6-5. Фазовое соотношение записей при различной локализации источника потенциала: 1 , 2, 3 - электроды; А, Б - каналы электроэнцефалографа; 1 - источник регистрируемой разности потенциалов находится под электродом 2 (записи по каналам А и Б в противофазе) ; II - источник регистрируемой разности потенциалов находится под электродом I (записи синфазны). Стрелки указывают направление тока в цепях каналов, определяющее соответствующие направления отклонения кривой на мониторе.

Б, а электрод 2 - одновременно к "входу 2" усилителя А и "входу 1" усилителя Б; предположить, что под электродом 2 происходит положительное смещение электрического потенциала по отношению к потенциалу остальных отделов мозга (обозначено знаком "+" ) , т о очевидно, что электрический ток, обусловленный этим смещением потенциала, будет иметь противоположное направление в цепях усилителей А и Б, что отразится в противоположно направленных смещениях разности потенциалов - противофазах - на соответствующих записях ЭЭГ. Таким образом, электрические колебания под электродом 2 в записях по каналам А и Б будут представлены кривыми, имеющими одинаковые частоты, амплитуды и форму, но противоположными по фазе. При коммутации электродов по нескольким каналам электроэнцефалографа в виде цепочки противофазные колебания исследуемого потенциала будут регистрироваться по тем двум каналам, к разноимённым входам которых подключён один общий электрод, стоящий над источником этого потенциала.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.