Пиши Дома Нужные Работы

Обратная связь

Задачи математического развития дошкольников.

 

Малыши постигают то содержание математической направленности, которое в современной методике развития математических представлений детей дошкольного возраста именуется предматематикой. Это содержание обеспечивает развитие мышления, освоение логико-математических представлений и способов познания.

 

Содержание предматематики направлено на развитие важнейших составляющих личности ребенка — его интеллекта и интеллектуально-творческих способностей.

 

Результатами освоения предматематики являются не только знания, представления и элементарные понятия, но и общее развитие познавательных процессов. Способности к абстрагированию, анализу, сравнению, обобщению, сериации и классификации, умение сравнивать предметы и явления, выяснять закономерности, обобщать, конкретизировать и упорядочивать являются важнейшей составляющей логико-математического опыта ребенка, который дает ему возможность самостоятельно познавать мир.

 

 

Освоенные математические представления, логико-математические средства и способы познания (эталоны, модели, речь, сравнение и др.) составляют первоначальный логико-математический опыт ребенка. Этот опыт является началом познания окружающей действительности, первым вхождением в мир математики.

 

Целью и результатом педагогического содействия математическому развитию детей дошкольного возраста является развитие интеллектуально-творческих способностей детей через освоение ими логико-математических представлений и способов познания.

 

Задачи математического развития в дошкольном детстве определены с учетом закономерностей развития познавательных процессов и способностей детей дошкольного возраста, особенностей становления познавательной деятельности и развития личности ребенка в дошкольном детстве. Выполнение этих задач должно обеспечивать реализацию принципа преемственности в развитии и воспитании ребенка на дошкольной и начальной школьной ступенях образования.



 

Основными задачами математического развития детей дошкольного возраста являются:

 

- развитие у детей логико-математических представлений (представлений о математических свойствах и отношениях предметов, конкретных величинах, числах, геометрических фигурах, зависимостях и закономерностях);

- развитие сенсорных (предметно-действенных) способов познания математических свойств и отношений: обследование, сопоставление, группировка, упорядочение, разбиение;

- освоение детьми экспериментально-исследовательских способов познания математического содержания (воссоздание, экспериментирование, моделирование, трансформация);

- развитие у детей логических способов познания математических свойств и отношений (анализ, абстрагирование, отрицание, сравнение, обобщение, классификация, сериация)';

- овладение детьми математическими способами познания действительности: счет, измерение, простейшие вычисления;

- развитие интеллектуально-творческих проявлений детей: находчивости, смекалки, догадки, сообразительности, стремления к поиску нестандартных решений задач;

- развитие точной, аргументированной и доказательной речи, обогащение словаря ребенка;

- развитие активности и инициативности детей;

- воспитание готовности к обучению в школе: развитие самостоятельности, ответственности, настойчивости в преодолении трудностей, координации движений глаз и мелкой моторики рук, умений самоконтроля и самооценки.

 

Содержание математического развития детей дошкольного возраста определяется, наряду с целями и задачами, следующими важными факторами.

 

Личностно-развивающая направленность содержания математического развития дошкольников должна являться эффективным средствомразвития интеллектуально-творческих способностей ребенка и содействовать развитию важнейшего личностного качества — самостоятельности в решении интеллектуальных задач.

 

Направленность математического содержания, которое осваивает ребенок в дошкольном возрасте, является социализирующей. Накопленный логико-математический опыт ребенка обязательно станет его значимым личностным приобретением, если обеспечит ситуацию успеха в разных видах деятельности, требующих проявления интеллектуально-творческих способностей.

 

Содержание математического развития дошкольников пропедевтично. Осваиваемое ребенком содержание должно позволить ему на чувственном, а затем и логическом уровне познать некоторые стороны действительности и развить те структуры мышления, на основе которых впоследствии будут формироваться основные математические понятия.

 

Осваиваемое содержание должно соответствовать возрастным и индивидуальным возможностям дошкольников, быть ориентированным на зону их ближайшего развития.

 

 

6. Взаимосвязь понятий "развитие", "обучение", "воспитание". Математические способности.

 

Математическое развитие детей дошкольного возраста осуществляется как в результате приобретения ребенком знаний в повседневной жизни (прежде всего, в результате общения со взрослым), так и путем целенаправленного обу­чения на занятиях по формированию элементарных матема­тических знаний.

 

Именно элементарные математические знания и умения детей следует рассматривать как главное средство математического развития.

 

В процессе обучения у детей развивается способность точнее и полнее воспринимать окружающий мир, выделять признаки предметов и явлений, раскрывать их связи, заме­чать свойства, интерпретировать наблюдаемое; формируют­ся мыслительные действия, приемы умственной деятельно­сти, создаются внутренние условия для перехода к новым формам памяти, мышления и воображения.

 

Психологические экспериментальные исследования и педагогический опыт свидетельствуют о том, что благодаря систематическому обучению дошкольников математике у них формируются сенсорные, перцептивные, мыслительные, вербальные, мнемические и другие компоненты общих и спе­циальных способностей.

Задатки индивида превращаются в конкретные способности посредством учения.

 

Разница в уровнях развития детей, как показывает опыт, выражается главным образом в том, какими темпами и с ка­кими успехами они овладевают знаниями.

Однако при всем важном значении обучения в психиче­ском развитии личности последнее нельзя сводить к учению. Развитие не исчерпывается теми изменениями личности, которые являются прямым следствием обучения. Оно характеризуется теми «умственными поворота­ми», которые происходят в голове ребенка, когда он научает­ся говорить, читать, считать, усваивает социальный опыт, передаваемый ему взрослым.

 

Как показывают исследования (А. В. Запорожец, Д. Б. Эльконин, В. В. Давыдов и др.), развитие идет дальше того, что усваивается в тот или иной момент обучения. В процессе и под влиянием обучения происходит целостное, прогрессирующее изменение личности, ее взглядов, чувств, способностей. Благо­даря обучению расширяются возможности дальнейшего усвое­ния нового, более сложного материала, создаются новые ре­зервы обучения.

Между обучением и развитием существует взаимная связь. Обучение активно содействует развитию ребенка, но и само опирается на его уровень развития. В этом процессе многое зависит от того, насколько обучение нацелено на раз­витие.

 

Обучение может по-разному развивать ребенка в зависи­мости от его содержания и методов. Именно содержание и его структура являются гарантами математического разви­тия ребенка.

 

Под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности - сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.

 

Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.

 

Способностине есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.

 

Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений.

 

Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей.

Во-вторых, многие думают, что способные к математике школьники отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул.

Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы, сам по себе, не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но, в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.

 

Крутецкий В.А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):

 

1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

3) Способность к оперированию числовой и знаковой символикой;

4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;

5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);

7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.

 

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2025 pdnr.ru Все права принадлежат авторам размещенных материалов.