Пиши Дома Нужные Работы

Обратная связь

Методика обучения сравнению от 2 до 5 предметов в среднем и 10 предметов в старшем дошкольном возрасте, упорядочиванию (сериации) в порядке возрастания и убывания.

 

К моменту перехода в подготовительную к школе группу дети должны научиться выделять измерения (длину, ширину, высоту) и оценивать размер предметов с точки зрения 2-3 измерений.

 

Для выделения данных величин используют упражнения в сопоставлении предметов. От сопоставления предметов, отличающихся одним измерением, дети переходят к сопоставлению предметов по 2-3 измерениям. ("Какая дощечка длиннее (короче)? Какая шире (уже)? Какая толще (тоньше)?")

 

Расширяется круг сопоставляемых предметов. Используют предметы, с которыми дети постоянно встречаются в различной деятельности (ленты, шарфики, скакалки, шнурки, ремешки, лыжи, коробки и пр.).

 

Сопоставление величин осуществляется не изолированно, а в системе рассмотрения других свойств предметов (их предназначение, части, цвет, материал и др.). Это имеет существенное значение для умственного развития детей.

 

Упражнения в сопоставлении величин значительно усложняются. Дети не только определяют размерные отношения между наглядно представленными предметами, но и воссоздают подобные отношения по представлению. Воспитатель дает им, например, такие задания: нарисовать 2 дорожки, чтобы одна из них была длиннее другой; нарисовать 2 ленточки одинаковой длины, разной ширины или одинаковой длины и ширины и т. п.

Особенно полезны упражнения, включающие изменение размера предметов. Используют 2 вида таких упражнений: изменение отдельных измерений объекта при сохранении его общей массы и уравнивание размеров предметов.

Производя изменение отдельных измерений, дети видят, что изменение одного из измерений при сохранении массы в целом ведет к изменению другого измерения. Например, столбик пластилина сделали длиннее (раскатали), зато он стал тоньше.



Данное упражнение способствует развитию различения детьми отдельных измерений. Упражняя в уравнивании размеров предметов, предлагают подобрать, а позднее изготовить предмет, равный образцу. Например, подобрать полоску для ремонта книги (коробки), палочку для вертушки и пр. или сделать ленточки для игры в "пятнашки", изготовить прямоугольник (квадрат).

Полезно предлагать детям составить предмет, равный образцу, из 2 других. Например, предложить ребенку подобрать 2 дощечки, длина которых вместе равна длине палочки-мерки, в свою очередь равной длине крыши домика, и т. п.

Если предметы непосредственно сопоставить нельзя, то вводится посредник - мерка. В качестве условной мерки используют разные предметы: полоску бумаги, кусок веревки, тесьму и пр. В этот период используют мерку большего размера, чем измеряемый предмет.

На мерке отмечают части, занимаемые предметами. Расстояние между отметками показывает, на сколько один предмет длиннее (шире, выше) другого. Каждый предмет может быть измерен отдельной меркой.

Сопоставление мерок позволяет уточнить разницу в размере предметов. Например, длина и ширина предмета могут быть сравнены с помощью 2 веревок, соответственно равных его длине и ширине.

Научившись пользоваться меркой-посредником, дети могут сравнивать размеры предметов, которые непосредственно сопоставить нельзя, например, с помощью планки сравнить длину 2 столов.

 

Особое место в старшей группе отводят упражнениям в группировке и упорядочивании предметов по отдельным измерениям (по длине, ширине и др.).

 

Усложнение упражнений в построении ряда величин в старшей группе состоит в том, что

- сопоставляют большее количество предметов (до 10 шт.), а разница их размеров еще более уменьшается (от 3 до 1 см);

- включают упражнения в подборе и построении в ряд не отдельных предметов, а пар предметов;

- используют предметы, отличающиеся уже не только одним, но и 2-3 измерениями.

- одни и те же предметы размещаются в ряд то по одному, то по другому признаку (например, палочки сначала раскладывают­ся по длине, а затем по толщине или цилиндры сначала расставляют в порядке возрастающей высоты, а затем в порядке возрастающей толщины).

- указанный воспитателем предмет в ряду сравни­вается не только с соседним, но и со всеми предшествующими ему или последующими. В результате этого ребенку становится понятным, что каждый элемент в ряду меньше (больше), чем все предыдущие, и больше (меньше), чем все последующие.

Группируя предметы по длине, дети помещают в одну группу все предметы одинаковой длины, несмотря на их различия в высоте и ширине. Выясняют, чем похожи и чем отличаются предметы, попавшие в одну группу, почему в одной группе оказались предметы разной высоты и т. п.

 

Дети видят, как изменяется место предметасреди другихв зависимости от того, по какому признаку они сопоставляются и упорядочиваются в ряд. Например, коричневый ремешок был первым, когда ремешки раскладывали в ряд от самого длинного до самого короткого, а когда ремешки разложили в ряд от самого широкого до самого узкого, он оказался на 3 месте.

Постепенно у детей формируется умение самостоятельно выделять признаки, по которым можно сравнить предметы. Они научаются последовательно сопоставлять предметы по выделенному признаку, не переключаясь на другие.

 

Полезно побуждать ребят еще до выполнения практического действия делать предположения (планировать действие). С этой целью надо ставить вопросы: "По какому признаку можно сгруппировать предметы? В каком порядке строить ряд предметов? Как выбирать нужный по порядку предмет?" Выполняя соответствующие действия, дети как бы проверяют верность предположений. Постепенно ребенок учится осознанно пользоваться правилом выбора следующего элемента при построении ряда. Выбирать надо каждый раз самый большой или самый маленький предмет среди всех оставшихся в зависимости от того, в каком порядке решили разместить предметы.

 

Пятилетних детей знакомят с некоторыми свойствами упорядоченного множества предметов.

Свойства ряда выделяются непосредственно в ходе практических действий.

Построив ряд, дети находят самый большой (длинный, высокий) или самый маленький (короткий, низкий и т. д.) предмет в ряду, а затем называют предметы по порядку, шагая по ряду то вверх, то вниз (самая низкая, выше, еще выше, самая высокая и т. п.), фиксируя определенность направления ряда.

Сравнение каждого из элементов ряда со смежными, а несколько позднее со всеми предшествующими и последующими позволяет детям понять относительность значения признака. ("Каждый элемент в ряду больше, чем все предыдущие, и меньше, чем все последующие, или наоборот".) Они перечисляют: красная полоска длиннее синей, голубей, белой, но короче желтой и зеленой и т. п.

Подобные упражнения подводят детей к осознанию свойства транзитности (если а > Ь и Ь > с, то а > с) (транзитивный - способный иметь прямое дополнение), которым обладает отношение порядка. Например, установив, что зеленая пирамидка выше красной, а красная - выше синей и т. д., дети приходят к выводу, что зеленая пирамидка выше и синей, и других пирамидок, стоящих за ней.

Для закрепления усвоения детьми свойства транзитивности используют игры, требующие от детей сме­калки и сообразительности.

1. «Кто первый?» - «Мишки (или матрешки) забыли, кто за кем стоял. Первый должен быть меньше второго, а второй меньше третьего. Какого размера первый мишка? А третий?»

2. «Чья коробочка?» - «У меня три коробочки от заводных игрушек: курочки, цыпленка и утенка. Курочка больше утенка, уте­нок больше цыпленка. Какая коробка утенка? Поместится ли ку­рочка в коробку утенка? А утенок в коробку цыпленка?»

3. «Угадайте, кто выше (ниже) ростом» - «Петя выше Саши, а Саша выше Коли. Кто из мальчиков самого низкого роста? А са­мого высокого?»

Вначале дети решают такие задачи, опираясь на наглядный материал, а позднее - лишь на основе словесного описания. Наглядность применяют для доказательства правильности ответа. Воспитатель обращает внимание на постоянство разности между соседними членами упорядоченного ряда. Дети с помощью мерки сравнивают размеры предметов специально составленного ряда и убеждаются в том, что любой предмет в ряду (начиная со второго) на одну и ту же величину больше (меньше) соседнего.

 

Определить размер предмета (длину, ширину) ребята могут, прикладывая одну к другой несколько равных мерок. Например, оказывается, что длина первой полосочки - 1, второй - 2, третьей - 3 мерки и т. д.; сравнив результаты измерения, дети устанавливают, что каждая полосочка на одну и ту же длину мерки больше или меньше соседней полоски.

 

Для закрепления знаний о свойствах упорядоченного ряда используют упражнения, требующие от детей проявления смекалки, сообразительности. Например, можно датьзадания:

· достроить ряд,

· построить его от промежуточного элемента,

· нарисовать ряд до и после его упорядочивания,

· найти место пропущенного или лишнего элемента в ряду,

· вставить в уже построенный ряд промежуточные элементы,

· преобразовать восходящий ряд в нисходящий и наоборот,

· найти соответствие между несколькими рядами,

· составить ряд из парных элементов и т.д.

Заданиям придают игровой характер, используя игры:

· «Что изменилось?»,

· «Угадайте, которого не хватает»,

· «Угадайте, где пропу­щено»,

· «Который лишний?»,

· «Найди свое место».

 

В практической деятельности (в игре, в труде) перед детьми часто возникает необходимость определить, какой предмет ближе, дальше находится ("Кто дальше бросил мешочек (шишку, снежок)?"), расположить предметы на определенном расстоянии друг от друга и др. В старшей группе детей можно учить измерять расстояние шагами. Упражнения целесообразно организовать на прогулке.

 

В процессе выполнения задания педагог помогает детям установить правила измерения: чтобы получился самый короткий путь, измерять надо по прямой линии; идти лучше широким шагом, равномерно; шаг - мерка. Мерка на всем расстоянии должна быть одинаковой.

Дети с увлечением определяют, сколько шагов до дерева, до ящика с песком и др. Обнаруживается, что при измерении одного и того же расстояния результаты у разных детей и у педагога получаются разные. "Сережа говорит, что от песочного ящика до скамейки 5 шагов, а Лена утверждает - 6! Кто из них прав? У кого получилось большее число шагов?" - ставит вопросы педагог. В результате неоднократных наблюденийдети утверждают, что количество шагов, получаемое в итоге, зависит от ширины шага. Когда надо сравнить расстояния, например, определить, кто дальше бросил мешочек, измерение шагами должен производить один ребенок.

По мере накопления опыта измерения расстояний детям предлагают на глаз определить, сколько шагов до того или иного предмета. Высказав предположение, ребята делают проверку, измеряя расстояние шагами.

Опыт непосредственного сопоставления размеров предметов создает предпосылки для сравнения по представлению. Детям дают задания: показать, какого размера тот или иной предмет, например какой высоты забор, ворота, детский столик; назвать предметы, которые больше, меньше (длиннее, короче) образца или равны ему; или просто сказать, какой величины карандаш, чашка, мяч, сравнив их с теми, которые видели раньше; назвать 2 предмета, про один из которых можно сказать, что он длиннее (короче), шире (уже), выше (ниже) другого.

 

 

35. Методика обучению измерения протяжённостей, объема жидких и сыпучих тел условными мерками и общепринятыми мерами в старшем и подготовительном дошкольном возрасте.

Основная задача обучения – формирование представлений об общих способах измерения.

В старшем дошкольном возрасте обучение измерению подчинено задаче формирования более точного восприятия величины сравниваемых предметов с помощью условных мерок.

 

Детей следует знакомить

- с правилами измерения условной меркой,

- научить дифференцировать объекты, средства измерения и результат, осознавая последний через количество мерок как одного из случаев функциональной зависимости,

- развивать умение давать словесные отчеты о выполнении задания, на этой основе углублять представления о связях и отношениях между числами,

- использовать навыки измерения для деления целого на части, развития глазомера.

В дальнейшем деятельность детей направляется на совершенствование измерительных умений и связанных с ними представлений, а также расширение математических знаний за счет ознакомления со стандартными мерами и способами измерения.

Детям показывают значение применения общепринятых мер измерения для получения объективных показателей величины измеряемых предметов и веществ, продолжается работа по углублению представлений о функциональной зависимости между компонентами измерения (объектом, средством и результатом), подводят детей к использованию полученных знаний при составлении и решении арифметических задач.

 

Метлина Л.С. отмечает, что в детском саду дети должны овладеть несколькими видами измерения условной меркой, которые выделяются в зависимости от особенностей объекта и мерки.

К первому виду следует отнести «линейное» измерение, когда дети с помощью полосок бумаги, палочек, веревок, шагов и других условных мерок учатся измерять длину, ширину, высоту различных предметов.

Второй вид — определение объема сыпучих веществ: кружкой, стаканом, ложкой и другими емкостями вымеряют количество крупы, сахара в пакете, в мешочке, в тарелке и т. д.

Наконец, третий вид — это измерение объема жидкостей, чтобы узнать, сколько стаканов или кружек молока в бидоне, воды в графине, чаю в чайнике и т. д.

 

Некоторые педагоги предлагают в качестве первоначального «линейное» измерение, другие — определение объема жидких и сыпучих веществ. Несмотря на различие объектов,сущность измерения условной меркой одна и та же во всех рассмотренных случаях. Учитывая то, что дети в практической деятельности чаще всего имеют дело с измерением длин, да и в школе измерение отрезков предшествует измерению других объектов, следует отдать предпочтение «линейному» измерению.

 

Педагог заранее продумывает и отбирает предметы, которые будут использоваться в процессе обучения измерению.

Объекты для измерения и мерки могут специально изготавливаться взрослым с привлечением детей (полоски бумаги, палочки, ленты и т. д.) или браться готовыми.

Для измерения привлекаются самые разнообразные бытовые предметы: веревки, тесьма, детали строительного материала (бруски), подкрашенная вода, песок, пакеты, мешочки, миски, тарелки, стаканы, чашки, ложки, банки и т. д.

Широко применяются естественные мерки: шаг, горсть, расставленные в стороны руки и т. д. Объекты для измерения ребенок может сам находить в окружающей обстановке: длина, ширина, высота стола, стула, шкафа, аквариума, количество семян, корма для рыбок, воды, необходимой для полива растений, и многие другие. Следует постепенно расширять круг предметов, вовлекаемых в процесс измерения. Это способствует более быстрому и прочному формированию навыков, переносу их в разные ситуации.

 

В оборудование педагогического процесса при обучении измерению включаются при необходимости карандаши, ножницы, так называемые фишки-эквиваленты — мелкие однородные предметы (кружки, квадраты, треугольники, палочки, пуговицы и т. д.), служащие для точного подсчета числа мерок.

 

Овладение детьми элементами измерительной деятельности складывается из суммы знаний, умений и навыков, формируемых в упражнениях с дидактическим материалом под руководством педагога.

Упражнениям, которые предлагаются для выполнения детям, целесообразно по возможности придавать практическую направленность:

- измерить полоски меркой и выбрать равные по длине и ширине для плетения ковриков;

- измерив ленту, разделить ее на равные части, чтобы хватило всем девочкам в группе;

- отмерить нужное количество воды для полива растений, корма для рыбок и т. д.

 

Задания, предлагаемые в такой форме, будят мысль, активизируют знания, способствуют выработке гибкости навыков.

 

Введение нового вида деятельности — измерения — осуществляется по-разному.

 

Можно начать эту работу с объяснения необходимости измерения в практической и хозяйственной деятельности людей. При этом важно активизировать имеющиеся у детей представления, полученные в процессе наблюдений на экскурсиях (например, за трудом продавцов в магазине).

Можно создать проблемную ситуацию, поставив детей в условия, когда они сами придут к выводу о необходимости измерения (определить, можно ли повесить книжную полку в простенке между окнами; хватит ли в чайнике чаю для всех и т. д.).

 

По мнению Столяра А.А., интерес к новой деятельности, которой предстоит овладеть, можно вызвать, сообщив детям, что в школе они будут продолжать учиться измерять. Научившись измерять, они смогут свои умения применить в различных делах.

Затем сообщается ряд правил (алгоритм), по которым протекает процесс измерения.

 

Например, при «линейном» измерении следует:

1) начинать измерять соответствующую протяженность предмета надо с самого начала (правильно определить точку отсчета);

2) сделать отметку карандашом или мелом в том месте, на которое пришелся конец мерки;

3) перемещать мерку следует слева направо при измерении длины и снизу вверх — при измерении ширины и высоты (по плоскости и отвесу соответственно);

4) при перемещении мерки прикладывать ее точно к отметке, обозначающей последнюю отмеренную часть;

5) перемещая мерки, надо не забывать их считать;

6) окончив измерение, сказать, что и чем измерено и каков результат.

 

Алгоритм измерения объемной меркойжидких и сыпучих веществ включает требования:

-соблюдение полноты мерки,

-сочетание измерения со счетом,

-отражение способа и результата действий в речи.

 

Показ с объяснением приемов измерения должен быть четким, ясным, немногословным, действия воспитателядолжны находиться в поле зрения ребенка.

 

Дети получают задания в конкретной форме. При этом воспитатель подчеркивает, что следует измерить (что сделать), как (указывает последовательность действий и требования к ним), кто с кем будет измерять (организация работы).

На первых порах дети затрудняются в одновременном выполнении измерительных действий и счете мерок. Чтобы облегчить задачу, вводятся фишки-эквиваленты в виде каких-либо предметов, одинаковых по размеру и небольших по величине. Отложив мерку, ребенок одновременно откладывает фишку-эквивалент. Подсчитав их количество, дети узнают, сколько мерок получилось при измерении, и тем самым определяют величину измеряемого объекта в точных количественных показателях.

Благодаря введению фишек-эквивалентов непрерывное представляется через дискретное, устанавливается взаимно однозначное соответствие между мерками и их заменителями.

Этот прием позволяет ребенку осмыслить сущность измерения, его результат независимо от того, что измеряют. Особенно необходим он на первых занятиях по освоению нового вида измерения условной меркой. Постепенно необходимость в использовании фишек-эквивалентов исчезает.

 

Леушина А.М. отмечает, что упражняя детей в каждом конкретном случае, важно подчеркнуть, что и чем измеряется, каков результат. Это поможет разграничить объект, средство и результат измерения, так как в дальнейшем дети будут устанавливать более сложные отношения между ними.

 

Следует обращать внимание на точность формулировок ответов на вопросы: «Что ты измерял?» — «Я измерил длину ленты (ширину стола, высоту стула и т. д.)». «Чем измерял?» — «Меркой».— «Какой?» — «Веревкой». Часто дети вместо слова измерил используют не совсем точный глагол смерял, смерил. Такие неточности необходимо предупреждать и исправлять.

Результаты измерения осмысливаются благодаря вариативным вопросам: «Сколько раз уложилась мерка при измерении? Сколько получилось мерок? Какова длина стола? Сколько стаканов крупы помещается в миске? Как ты догадался, что...? Почему так получилось? Что обозначает число, которое получилось при измерении?»

Определяя результат измерения, надо учить детей связывать получаемое число с названием мерки (длина стола равна четырем меркам, в тарелке две чашки крупы, в банке три стакана воды и т. д.).

 

По мнению Метлиной Л.С., детей нужно подвести к пониманию того, что для каждого объекта подбирается мерка одного и того же рода с ним: «Какими мерками можно измерить длину комнаты? Годится ли эта мерка для измерения крупы в тарелке? Какую мерку из нескольких лучше взять, чтобы определить, сколько воды в банке?» и т. д.

Обобщая детские ответы, воспитатель подчеркивает необходимость продуманного подхода к выбору мерки, которая должна соответствовать измеряемому свойству, быть удобной для работы. Используя разные мерки при измерении одного и того же объекта, самостоятельно подбирая или выбирая их из нескольких, они осознают ее условность.

Постепенно дети с помощью взрослого приходят к пониманию: мерка — это предмет для измерения, мерки могут быть разными.

 

Михайлова З.А. отмечает, что в процессе выполнения заданий необходимо исправлять, а еще лучше предупреждать ошибки, которые дети часто допускают.

При «линейном» измерении:

-неправильно устанавливается точка отсчета, измерение начинается не от самого начала (края) предмета;

-мерка перемещается произвольно, т. е. прикладывается на каком-либо расстоянии от метки;

-мерка непроизвольно сдвигается вправо или влево, вверх или вниз (иногда в двух направлениях одновременно), так как слабо фиксируется ее положение на плоскости;

-дети забывают считать мерки, поэтому, выполнив измерение, не называют его результата;

-вместо отложенных мерок подсчитываются черточки-отметки;

- при измерении длины и ширины одного и того же предмета пропускается начальный отрезок (определенная часть предмета не относится ребенком к длине и ширине одновременно).

При измерении объемными мерками жидких и сыпучих веществ:

- нет равномерности в наполнении мерок, отсюда результаты либо преувеличены, либо уменьшены;

- чем меньше остается измеряемого вещества, тем меньше наполняемость мерки;

- не сочетаются счет и измерение.

 

В процессе обучения измерению используются разные формы организации деятельности детей: коллективная и индивидуальная. Они зависят от степени сформированности измерительных навыков и умений, характера привлекаемого материала. Когда сформированы некоторые навыки, выполнение одного задания можно поручить нескольким детям: «Саша и Миша будут измерять полоской бумаги длину подоконника». Совместная деятельность приучает согласовывать действия, оказывать друг другу помощь. При выполнении измерительных работ дети могут располагаться за столом и в разных местах групповой комнаты в свободной позе.

 

Первоначальное обучение измерению требует 10—12 занятий. Для этой работы отводится обычно часть занятия, а остальное время посвящается реализации других требований программы развития математических представлений. Обучение новому виду измерения может осуществляться в течение всего занятия. Постепенно обучение измерительной деятельности перемещается из первой части занятия в другие, в том числе заключительную. Это можно связать с разными программными задачами развития математических представлений.

 

Упражнения в измерениях могут организовываться на участке детского сада. В этих случаях предварительно продумывается, что и чем будет измеряться, а также распределение детей при выполнении практических работ.

С целью закрепления навыков можно давать домашние задания в измерении объектов. Важно, чтобы этот прием не был формальным. Воспитателю следует поинтересоваться выполнением домашнего задания.

Метлина Л.С. отмечает, что собственная измерительная деятельность детей должна сочетаться с наблюдением измерительной деятельности взрослых в процессе их труда. Такие наблюдения проводятся постепенно, в течение всего процесса обучения измерению.

Приобретенные на занятиях по математике знания и навыки измерения следует закреплять на занятиях по рисованию, аппликации, конструированию, в процессе труда в природе, в быту и т.д. Можно рекомендовать родителям привлекать детей к посильным измерениям в домашних условиях, предварительно познакомив их с возможностями дошкольников в этом плане.

 

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2025 pdnr.ru Все права принадлежат авторам размещенных материалов.