Пиши Дома Нужные Работы
Обратная связь
|
Действующее значение переменного тока Лекции по ТОЭ
Введение
- Элементы электрических цепей.
- Топология электрических цепей.
- Переменный ток. Изображение синусоидальных переменных.
- Элементы цепи синусоидального тока, векторные диаграммы и комплексные соотношения для них.
- Основы символического метода расчета. Методы контурных токов и узловых потенциалов.
- Основы матричных методов расчета электрических цепей.
- Мощность в электрических цепях.
- Резонансные явления в цепях синусоидального тока.
- Векторные и топографические диаграммы. Преобразование линейных электрических цепей.
- Анализ цепей с индуктивно связанными элементами.
- Особенности составления матричных уравнений при наличии индуктивных связей и ветвей с идеальными источниками.
- Методы расчета, основанные на свойствах линейных цепей.
- Метод эквивалентного генератора. Теорема вариаций.
- Пассивные четырехполюсники.
- Электрические фильтры.
- Трехфазные электрические цепи: основные понятия и схемы соединения.
- Расчет трехфазных цепей.
- Применение векторных диаграмм для анализа несимметричных режимов. Мощность в трехфазных цепях.
- Метод симметричных составляющих.
- Теорема об активном двухполюснике для симметричныхсоставляющих.
- Вращающееся магнитное поле. Принцип действия асинхронного и синхронного двигателей.
- Линейные электрические цепи при несинусоидальных периодических токах.
- Резонансные явления в цепях несинусоидального тока. Высшие гармоники в трехфазных цепях.
- Переходные процессы в линейных электрических цепях. Классический метод расчета переходных процессов.
- Методика и примеры расчета переходных процессов классическим методом.
- Определение постоянной времени. Переходные процессы в R-L-C-цепи.
- Операторный метод расчета переходных процессов.
- Последовательность расчета переходных процессов операторным методом. Формулы включения. Переходные проводимость и функция по напряжению.
- Интеграл Дюамеля. Метод переменных состояния.
- Нелинейные цепи постоянного тока. Графические методы расчета.
- Расчет нелинейных цепей методом эквивалентного генератора. Аналитические и итерационные методы расчета цепей постоянного тока.
- Нелинейные магнитные цепи при постоянных потоках.
- Общая характеристика задач и методов расчета магнитных цепей.
- Особенности нелинейных цепей переменного тока. Графический метод расчета с использованием характеристик для мгновенных значений.
- Графические методы расчета с использованием характеристик по первым гармоникам и действующим значениям. Феррорезонанс. Аналитические методы расчета.
- Метод кусочно-линейной аппроксимации. Метод гармонического баланса.
- Понятие об эквивалентном эллипсе, заменяющем петлю гистерезиса. Потери в стали. Катушка и трансформатор с ферромагнитными сердечниками.
- Переходные процессы в нелинейных цепях. Аналитические методы расчета.
- Понятие о графических методах анализа переходных процессов в нелинейных цепях. Методы переменных состояния и дискретных моделей.
- Цепи с распределенными параметрами в стационарных режимах: основные понятия и определения.
- Линия без искажений. Уравнения линии конечной длины. Определение параметров длинной линии. Линия без потерь. Стоячие волны.
- Входное сопротивление длинной линии. Переходные процессы в цепях с распределенными параметрами.
- Сведение расчета переходных процессов в цепях с распределенными параметрами к нулевым начальным условиям. Правило удвоения волны.
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ
Доктор техн. наук, профессор А.Н. Голубев
Введение
Теоретические основы электротехники (ТОЭ) являются базовым общетехническим курсом для электротехнических и электроэнергетических специальностей вузов. Курс ТОЭ рассчитан на изучение в течение трех семестров и состоит из двух основных частей: теории цепей (два семестра) и теории электромагнитного поля (один семестр). Данный лекционный курс посвящен первой из указанных частей ТОЭ -теории линейных и нелинейных электрических и магнитных цепей. Содержание курса и последовательность изложения материала в нем в целом соответствуют программе дисциплины ТОЭ для электротехнических и электроэнергетических специальностей вузов.
Цель данного курса состоит в том, чтобы дать студентам достаточно полное представление об электрических и магнитных цепях и их составных элементах, их математических описаниях, основных методах анализа и расчета этих цепей в статических и динамических режимах работы, т.е. в создании научной базы для последующего изучения различных специальных электротехнических дисциплин.
Задачи курса заключаются в освоении теории физических явлений, положенных в основу создания и функционирования различных электротехнических устройств, а также в привитии практических навыков использования методов анализа и расчета электрических и магнитных цепей для решения широкого круга задач.
В результате изучения курса студент должен знать основные методы анализа и расчета установившихся процессов в линейных и нелинейных цепях с сосредоточенными параметрами, в линейных цепях несинусоидального тока, в линейных цепях с распределенными параметрами, основные методы анализа и расчета переходных процессов в указанных цепях и уметь применять их на практике.
Знания и навыки, полученные при изучении данного курса, являются базой для освоения таких дисциплин, как: математические основы теории автоматического управления, теория автоматического управления, электропривод, промышленная электроника, электроснабжение промышленных предприятий, переходные процессы в электрических системах, электрические измерения и т. д.
При изучении дисциплины предполагается, что студент имеет соответствующую математическую подготовку в области дифференциального и интегрального исчислений, линейной и нелинейной алгебры, комплексных чисел и тригонометрических функций, а также знаком с основными понятиями и законами электричества и магнетизма, рассматриваемыми в курсе физики.
Курс рассчитан на 86 лекционных часов и включает в себя следующие основные разделы:
-теория линейных цепей синусоидального и, как частный случай, постоянного тока;
-основы теории пассивных четырехполюсников и фильтров;
-трехфазные электрические цепи;
-линейные цепи при периодических несинусоидальных токах;
-переходные процессы в линейных электрических цепях;
-нелинейные электрические и магнитные цепи при постоянных и переменных токах и магнитных потоках в стационарных режимах;
-переходные процессы в нелинейных цепях;
-установившиеся и переходные процессы в цепях с распределенными параметрами.
При подготовке лекционного курса были использованы известные учебники, сборники и пособия [1…12], а также методические разработки кафедры ТОЭЭ ИГЭУ.
Рекомендуемая учебно-методическая литература по дисциплине:
- Бессонов Л.А.Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Основытеории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Теоретическиеосновы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. М.:Энергия, 1972. –240с.
- Теоретическиеосновы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.: Энергия- 1972. –200с.
- Матханов П.Н. Основы анализа электрических цепей. Линейные цепи: Учеб. для электротехн. и радиотехн. спец. вузов. –3-е изд., перераб. и доп. –М.: Высш. шк., 1990. –400 с.
- Матханов П.Н. Основы анализа электрических цепей. Нелинейные цепи: Учеб. для электротехн. спец. вузов. –2-е изд., перераб. и доп. –М.: Высш. шк., 1986. –352 с.
- Каплянский А.Е.и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. -448 с.
- Теоретическиеосновы электротехники. Т. 1. Основы теории линейных цепей. Под ред. П.А. Ионкина. Учебник для электротехн. вузов. Изд. 2-е, перераб. и доп. –М.: Высш. шк., 1976. –544 с.
- Теоретическиеосновы электротехники. Т. 2. Нелинейные цепи и основы теории электромагнитного поля. Под ред. П.А. Ионкина. Учебник для электротехн. вузов. Изд. 2-е, перераб. и доп. –М.: Высш. шк., 1976. –383 с.
- Сборникзадач и упражнений по теоретическим основам электротехники: Учеб. пособие для вузов/ Под. ред. проф. П.А.Ионкина. –М.: Энергоиздат, 1982. –768 с.
- Сборникзадач и упражнений по теоретическим основам электротехники: Учеб. пособие для вузов/ Под. ред. проф. П.А.Ионкина. –М.: Энергоиздат, 1982. –768 с.
- Сборникзадач и упражнений по теоретическим основам электротехники: Учеб. пособие/ Бессонов Л.А., Демидова И.Г., Заруди М.Е. и др.; Под ред. Бессонова Л.А. . –2-е изд., перераб. и доп. –М.: Высш. шк., 1980. –472 с.
- Основыанализа и расчета линейных электрических цепей: Учеб. пособие/ Н.А.Кромова. –2-е изд., перераб. и доп.; Иван. гос. энерг. ун-т. –Иваново, 1999. -360 с.
- Голубев А.Н. Методы расчета нелинейных цепей: Учеб. пособие/ Иван. гос. энерг. ун-т. –Иваново, 2002. -212 с.
Теория / ТОЭ / Лекция N 1. Элементы электрических цепей.
|
Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные характеристики можно описать с помощью таких интегральных понятий, как: напряжение, ток, электродвижущая сила (ЭДС). При таком подходе совокупность электротехнических устройств, состоящую из соответствующим образом соединенных источников и приемников электрической энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и (или) информации, рассматривают как электрическую цепь. Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи. Основными элементами цепи являются источники и приемники электрической энергии (сигналов). Электротехнические устройства, производящие электрическую энергию, называются генераторами или источниками электрической энергии, а устройства, потребляющие ее – приемниками (потребителями) электрической энергии.
У каждого элемента цепи можно выделить определенное число зажимов (полюсов), с помощью которых он соединяется с другими элементами. Различают двух –и многополюсные элементы. Двухполюсники имеют два зажима. К ним относятся источники энергии (за исключением управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы. Многополюсные элементы – это, например, триоды, трансформаторы, усилители и т.д.
Все элементы электрической цепи условно можно разделить на активные и пассивные. Активным называется элемент, содержащий в своей структуре источник электрической энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности и конденсаторы) энергия. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными, в противном случае они относятся к классу нелинейных. Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их как линейных, что существенно упрощает математическое описание и анализ процессов, определяется границами изменения характеризующих их переменных и их частот. Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях, называются параметрами элемента.
Если параметры элемента не являются функциями пространственных координат, определяющих его геометрические размеры, то он называетсяэлементом с сосредоточенными параметрами. Если элемент описывается уравнениями, в которые входят пространственные переменные, то он относится к классу элементов с распределенными параметрами. Классическим примером последних является линия передачи электроэнергии (длинная линия).
Цепи, содержащие только линейные элементы, называются линейными. Наличие в схеме хотя бы одного нелинейного элемента относит ее к классу нелинейных.
Рассмотрим пассивные элементы цепи, их основные характеристики и параметры.
1. Резистивный элемент (резистор)
Условное графическое изображение резистора приведено на рис. 1,а. Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее определяется геометрическими размерами тела и свойствами материала: удельным сопротивлением r (Ом´ м) или обратной величиной – удельной проводимостью (См/м).
В простейшем случае проводника длиной и сечением S его сопротивление определяется выражением
.
В общем случае определение сопротивления связано с расчетом поля в проводящей среде, разделяющей два электрода.
Основной характеристикой резистивного элемента является зависимость (или ), называемая вольт-амперной характеристикой (ВАХ). Если зависимость представляет собой прямую линию, проходящую через начало координат (см.рис. 1,б), то резистор называется линейным и описывается соотношением
или
,
где - проводимость. При этом R=const.
Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет показано в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими параметрами. В частности безынерционному резистору ставятся в соответствие статическое и дифференциальное сопротивления.
2. Индуктивный элемент (катушка индуктивности)
Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.
Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,
.
В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки, на число этих витков , где .
Основной характеристикой катушки индуктивности является зависимость , называемая вебер-амперной характеристикой. Для линейных катушек индуктивности зависимость представляет собой прямую линию, проходящую через начало координат (см. рис. 2,б); при этом
.
Нелинейные свойства катушки индуктивности (см. кривую на рис. 2,б) определяет наличие у нее сердечника из ферромагнитного материала, для которого зависимость магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного гистерезиса нелинейная катушка характеризуется статической и дифференциальной индуктивностями.
3. Емкостный элемент (конденсатор)
Условное графическое изображение конденсатора приведено на рис. 3,а.
Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется отношением заряда q на обкладках конденсатора к напряжению u между ними
и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними. Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная диэлектрическая проницаемость =const. В этом случае зависимость представляет собой прямую линию, проходящую через начало координат, (см. рис. 3,б) и
.
У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость является функцией напряженности поля, что обусловливает нелинейность зависимости (рис. 3,б). В этом случае без учета явления электрического гистерезиса нелинейный конденсатор характеризуется статической и дифференциальной емкостями.
Схемы замещения источников электрической энергии
Свойства источника электрической энергии описываются ВАХ , называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) RН.
В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:
а – режиму холостого хода ;
б –режиму короткого замыкания .
Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.
Прямая 2 на рис. 4,б описывается линейным уравнением
,
| (1)
| где - напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); - внутреннее сопротивление источника.
Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС. Напряжение на зажимах этого элемента не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника . Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.
Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.
Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на . В результате получим
или
,
| (2)
| где ; - внутренняя проводимость источника.
Уравнению (2) соответствует схема замещения источника на рис. 6,а.
На этой схеме символом J обозначен элемент, называемый идеальным источником тока. Ток в ветви с этим элементом равен и не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника , т.е. его внутреннее сопротивление .
Отметим, что в расчетном плане при выполнении условия последовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.
Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность
,
| (3)
| Условие такого режима
,
| (4)
| В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности. |
Литература
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия, 1972. –240 с.
- Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.
Контрольные вопросы и задачи
- Может ли внешняя характеристик источника проходить через начало координат?
- Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
- В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
- Определить индуктивность L и энергию магнитного поля WМкатушки, если при токе в ней I=20А потокосцепление y =2 Вб.
Ответ: L= Гн; WМ= Дж.
- Определить емкость С и энергию электрического поля WЭконденсатора, если при напряжении на его обкладках U=400 В заряд конденсатора q=0,2´ 10-3 Кл.
Ответ: С= мкФ; WЭ= Дж.
- У генератора постоянного тока при токе в нагрузке I1=50Анапряжение на зажимах U1=210 В,а притоке, равном I2=100А, оно снижается до U2=190 В.
- Определить параметры последовательной схемы замещения источника и ток короткого замыкания.
Ответ: Е = В, Rвн= Ом, Iкз= А
- Вывести соотношения (3) и (4) и определить максимальную мощность, отдаваемую нагрузке, по условиям предыдущей задачи.
Ответ: Pmax = kВт
|
Теория / ТОЭ / Лекция N 2. Топология электрической цепи.
|
Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения. Соединение элементов электрической цепи наглядно отображается ее схемой. Рассмотрим для примера две электрические схемы (рис. 1, 2), введя понятие ветви и узла.
Ветвью называется участок цепи, обтекаемый одним и тем же током.
Узел – место соединения трех и более ветвей.
Представленные схемы различны и по форме, и по назначению, но каждая из указанных цепей содержит по 6 ветвей и 4 узла, одинаково соединенных. Таким образом, в смысле геометрии (топологии) соединений ветвей данные схемы идентичны.
Топологические (геометрические) свойства электрической цепи не зависят от типа и свойств элементов, из которых состоит ветвь. Поэтому целесообразно каждую ветвь схемы электрической цепи изобразить отрезком линии. Если каждую ветвь схем на рис. 1 и 2 заменить отрезком линии, получается геометрическая фигура, показанная на рис. 3.
Условное изображение схемы, в котором каждая ветвь заменяется отрезком линии, называется графом электрической цепи. При этом следует помнить, что ветви могут состоять из каких-либо элементов, в свою очередь соединенных различным образом.
Отрезок линии, соответствующий ветви схемы, называется ветвью графа. Граничные точки ветви графа называют узлами графа. Ветвям графа может быть дана определенная ориентация, указанная стрелкой. Граф, у которого все ветви ориентированы, называется ориентированным.
Подграфом графа называется часть графа, т.е. это может быть одна ветвь или один изолированный узел графа, а также любое множество ветвей и узлов, содержащихся в графе.
В теории электрических цепей важное значение имеют следующие подграфы:
1. Путь – это упорядоченная последовательность ветвей, в которой каждые две соседние ветви имеют общий узел, причем любая ветвь и любой узел встречаются на этом пути только один раз. Например, в схеме на рис. 3 ветви 2-6-5; 4-5; 3-6-4; 1 образуют пути между одной и той же парой узлов 1 и 3. Таким образом, путь – это совокупность ветвей, проходимых непрерывно.
2. Контур – замкнутый путь, в котором один из узлов является начальным и конечным узлом пути. Например, для графа по рис. 3 можно определить контуры, образованные ветвями 2-4-6; 3-5-6; 2-3-5-4. Если между любой парой узлов графа существует связь, то граф называют связным.
3. Дерево – это связный подграф, содержащий все узлы графа, но ни одного контура. Примерами деревьев для графа на рис. 3 могут служить фигуры на рис. 4.
Рис.4
4. Ветви связи (дополнения дерева) – это ветви графа, дополняющие дерево до исходного графа.
Если граф содержит m узлов и n ветвей, то число ветвей любого дерева , а числа ветвей связи графа .
5. Сечение графа – множество ветвей, удаление которых делит граф на два изолированных подграфа, один из которых, в частности, может быть отдельным узлом.
Сечение можно наглядно изобразить в виде следа некоторой замкнутой поверхности, рассекающей соответствующие ветви. Примерами таких поверхностей являются для нашего графа на рис. 3 S1 иS2 . При этом получаем соответственно сечения, образованные ветвями 6-4-5 и 6-2-1-5.
С понятием дерева связаны понятия главных контуров и сечений:
- главный контур – контур, состоящий из ветвей дерева и только одной ветви связи;
- главное сечение– сечение, состоящее из ветвей связи и только одной ветви дерева.
Топологические матрицы
Задать вычислительной машине топологию цепи рисунком затруднительно, так как не существует эффективных программ распознавания образа. Поэтому топологию цепи вводят в ЭВМ в виде матриц, которые называют топологическими матрицами. Выделяют три таких матрицы: узловую матрицу, контурную матрицу и матрицу сечений.
1. Узловая матрица (матрица соединений) – это таблица коэффициентов уравнений, составленных по первому закону Кирхгофа. Строки этой матрицы соответствуют узлам, а столбцы – ветвям схемы.
Для графа на рис. 3 имеем число узлов m=4 и число ветвей n=6. Тогда запишем матрицу АН , принимая, что элемент матрицы (i –номер строки; j –номер столбца) равен 1, если ветвь j соединена с узлом i и ориентирована от него, -1, если ориентирована к нему, и 0, если ветвь j не соединена с узломi . Сориентировав ветви графа на рис. 3, получим
.Данная матрица АН записана для всех четырех узлов и называется неопределенной. Следует указать, что сумма элементов столбцов матрицы АН всегда равна нулю, так как каждый столбец содержит один элемент +1 и один элемент -1, остальные нули.
Обычно при расчетах один (любой) заземляют. Тогда приходим к узловой матрице А (редуцированной матрице), которая может быть получена из матрицы АН путем вычеркивания любой ее строки. Например, при вычеркивании строки “4” получим
.Число строк матрицы А равно числу независимых уравнений для узлов , т.е. числу уравнений, записываемых для электрической схемы по первому закону Кирхгофа. Итак, введя понятие узловой матрицы А, перейдем к первому закону Кирхгофа.
Первый закон Кирхгофа
Обычно первый закон Кирхгофа записывается для узлов схемы, но, строго говоря, он справедлив не только для узлов, но и для любой замкнутой поверхности, т.е. справедливо соотношение
| (1)
| где - вектор плотности тока; - нормаль к участку dS замкнутой поверхности S.
Первый закон Кирхгофа справедлив и для любого сечения. В частности, для сечения S2 графа на рис. 3, считая, что нумерация и направления токов в ветвях соответствуют нумерации и выбранной ориентации ветвей графа, можно записать
.
Поскольку в частном случае ветви сечения сходятся в узле, то первый закон Кирхгофа справедлив и для него. Пока будем применять первый закон Кирхгофа для узлов, что математически можно записать, как:
| (2)
| т.е. алгебраическая сумма токов ветвей, соединенных в узел, равна нулю.
При этом при расчетах уравнения по первому закону Кирхгофа записываются для (m-1) узлов, так как при записи уравнений для всех m узлов одно (любое) из них будет линейно зависимым от других, т.е. не дает дополнительной информации.
Введем столбцовую матрицу токов ветвей
I=
|
| Тогда первый закон Кирхгофа в матричной форме записи имеет вид:
– где O- нулевая матрица-столбец. Как видим, в качестве узловой взята матрица А, а не АН, т.к. с учетом вышесказанного уравнения по первому закону Кирхгофа записываются для (m-1) узлов.
В качестве примера запишем для схемы на рис. 3
Отсюда для первого узла получаем
,
что и должно иметь место.
2. Контурная матрица (матрица контуров) – это таблица коэффициентов уравнений, составленных по второму закону Кирхгофа. Строки контурной матрицы Всоответствуют контурам, а столбцы – ветвям схемы.
Элемент bij матрицы В равен 1, если ветвь j входит в контур i и ее ориентация совпадает с направлением обхода контура, -1, если не совпадает с направлением обхода контура, и 0, если ветвьj не входит в контурi.
Матрицу В, записанную для главных контуров, называют матрицей главных контуров. При этом за направление обхода контура принимают направление ветви связи этого контура. Выделив в нашем примере (см. рис. 5) дерево, образуемое ветвями 2-1-4, запишем коэффициенты для матрицы В.
.
Перейдем теперь ко второму закону Кирхгофа.
Под напряжением на некотором участке электрической цепи понимается разность потенциалов между крайними точками этого участка, т.е.
| (4)
| Просуммируем напряжения на ветвях некоторого контура:
Поскольку при обходе контура потенциал каждой i-ой точки встречается два раза, причем один раз с “+”, а второй – с “-”, то в целом сумма равна нулю.
Таким образом, второй закон Кирхгофа математически записывается, как:
| (5)
| - и имеет место следующую формулировку: алгебраическая сумма напряжений на зажимах ветвей (элементов) контура равна нулю. При этом при расчете цепей с использованием законов Кирхгофа записывается независимых уравнений по второму закону Кирхгофа, т.е. уравнений, записываемых для контуров, каждый из которых отличается от других хотя бы одной ветвью. Значение топологического понятия “дерева”: дерево позволяет образовать независимые контуры и сечения и, следовательно, формировать независимые уравнения по законам Кирхгофа. Таким образом, с учетом (m-1) уравнений, составленных по первому закону Кирхгофа, получаем систему из уравнений, что равно числу ветвей схемы и, следовательно, токи в них находятся однозначно.
Введем столбцовую матрицу напряжений ветвей
U=
|
| Тогда второй закон Кирхгофа в матричной форме записи имеет вид
В качестве примера для схемы рис. 5 имеем
,
откуда, например, для первого контура получаем
,
что и должно иметь место.
|
|
©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.
|