Метод узловых потенциалов в матричной форме Метод контурных токов в матричной форме
В соответствии с введенным ранее понятием матрицы главныхконтуровВ, записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам.
Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c=n-m+1. Выражение (6) запишем следующим образом:
.
| (7)
|
В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j–го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j–й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения
,
| (8)
|
где - столбцовая матрица контурных токов; - транспонированная контурная матрица.
С учетом (8) соотношение (7) можно записать, как:
| (9)
|
Полученное уравнение представляет собойконтурные уравнения вматричной форме. Если обозначить
,
| (10)
|
.
| (11)
|
то получим матричную форму записи уравнений, составленных по методу контурных токов:
,
| (12)
|
где - матрица контурных сопротивлений; - матрица контурных ЭДС.
В развернутой форме (12) можно записать, как:
,
| (13)
|
то есть получили известный из метода контурных токов результат.
Рассмотрим пример составления контурных уравнений.
Пусть имеем схему по рис. 2. Данная схема имеет четыре узла (m=4) и шесть обобщенных ветвей (n=6). Число независимых контуров, равное числу ветвей связи,
c=n-m+1=6-4+1=3.
Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3.
Запишем матрицу контуров, которая будет являться матрицей главных контуров, поскольку каждая ветвь связи входит только в один контур. Принимая за направление обхода контуров направления ветвей связи, получим:
В
|
|
.Диагональная матрица сопротивлений ветвей
Z
|
|
Матрица контурных сопротивлений
Zk=BZBT
|
|
.
Матрицы ЭДС и токов источников
Тогда матрица контурных ЭДС
.
Матрица контурных токов
| .
| Таким образом, окончательно получаем:
,
где ; ; ; ; ; ; ; ; .
Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов.
Метод узловых потенциалов в матричной форме
На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:
,
| (14)
|
где - диагональная матрица проводимостей ветвей, все члены которой, за исключением элементов главной диагонали, равны нулю.
МатрицыZ и Y взаимно обратны.
Умножив обе части равенства (14) на узловую матрицуАи учитывая первый закон Кирхгофа, согласно которому
,
| (15)
| получим:
. .
| (16)
| Выражение (16) перепишем, как:
.
| (17)
|
Принимая потенциал узла, для которого отсутствует строка в матрице А, равным нулю, определим напряжения на зажимах ветвей:
.
| (18)
| Тогда получаем матричное уравнение вида:
.
| (19)
| Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить
| (20)
|
,
| (21)
| то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:
| (22)
|
где - матрица узловых проводимостей; - матрица узловых токов.
В развернутом виде соотношение (22) можно записать, как:
| (23)
| то есть получили известный из метода узловых потенциалов результат.
Рассмотрим составление узловых уравнений на примере схемы по рис. 4.
Данная схема имеет 3 узла (m=3) и 5 ветвей (n=5). Граф схемы с выбранной ориентацией ветвей представлен на рис. 5.
Узловая матрица (примем )
А
|
|
Диагональная матрица проводимостей ветвей:
Y
| ,
|
где .
Матрица узловых проводимостей
.
Матрицы токов и ЭДС источников
. .Следовательно, матрица узловых токов будет иметь вид:
.Таким образом, окончательно получаем:
,
где ; ; ; ; .
Анализ результатов показывает, что полученные уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу узловых потенциалов.
Литература
- Основытеории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А.Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Контрольные вопросы и задачи
- В чем заключаются преимуществаиспользования матричныхметодоврасчета цепей?
- Запишите выражения матрицы контурных сопротивлений и матрицы контурных ЭДС.
- Запишите выражения матрицы узловых проводимостей и матрицы узловых токов.
- Составить узловые уравнения для цепи на рис. 2.
Ответ:
.
- Составить контурные уравнения для цепи рис. 4, приняв, что дерево образовано ветвями 3 и 4 (см. рис. 5).
Ответ:
|