Пиши Дома Нужные Работы

Обратная связь

Этапы процесса моделирования

На рис. 1.9 представлены этапы построения модели.

 

Рис. 1.9. Этапы процесса моделирования

Спираль, которая была рассмотрена на рис. 1.3, представлена на рис. 1.13 как виток. Но обратите внимание на возможность возвращения с каждого этапа на более ранний (или более ранние) при обнаружении ошибки. Спираль имеет достаточно сложный вид, прошита дополнительными связями.

Конечно, моделирование, как уже было сказано, в соединении с проектированием — это технология решения проблем, задач. Но у каждой технологии все-таки есть граница, за которой она менее эффективна. Такая граница есть и здесь.

Очевидно, что первые этапы решают менее формализованные задачи, а последующие — все более формальные. Соответственно, методы первых этапов менее формализованы, а последующих — более формальные, мощные. Это означает, что самые трудные и ответственные этапы для моделировщика — первые. Здесь от него требуется больше интуитивных решений. И ошибка на более ранних этапах больше сказывается на дальнейших решениях, возвращаться и переделывать приходится гораздо больше, чем на последних этапах. Поэтому удачные решения на первых этапах вызывают пристальный интерес системотехников, наука моделирования проявляет к ним повышенное внимание. Поскольку формальные методы легко автоматизируются, то последние этапы схемы поддержаны программными продуктами и легко доступны конечным пользователям, но наибольший интерес сегодня представляют программные продукты, поддерживающие первые этапы — системы, помогающие формализовать задачи. А также системы, обеспечивающие сквозное проектирование, доведённое до моделирования и конечной реализации (автоматическое порождение кода по описанию проекта).



И ещё очень важно отметить, что модель отражает причинно-следственные связи. Между переменными построенной модели действительно есть крепкая связь. Изменение одной переменной влечёт за собой изменение другой. Мы ранее сказали, что «модель играет системообразующую и смыслообразующую роль в научном познании, позволяет понять явление, структуру изучаемого объекта, установить связь причины и следствия между собой». Это означает, что модель позволяет определить причины явлений, характер взаимодействия её составляющих. Модель связывает причины и следствия через законы, то есть переменные связываются между собой через уравнения или выражения.

 

Роль модели и адекватность модели

Построив модель, исследователь может:

  • прогнозировать свойства и поведение объекта как внутри области, в которой построена модель, так и (при обоснованном применении) за её пределами (прогнозирующая роль модели);
  • управлять объектом, отбирая наилучшие воздействия путём испытания их на модели (управляющая роль);
  • познавать явление или объект, модель которого он построил (познавательная роль модели);
  • получать навыки по управлению объектом путём использования модели как тренажёра или игры (обучающая роль);
  • улучшать объект, изменяя модель и испытывая её (проектная роль).

Поскольку модель является выражением конечного ряда и только важнейших для конкретного исследования аспектов сущности, то она не может быть абсолютно идентичной моделируемому объекту. Кроме этого, реальный объект бесконечен для познания. Поэтому нет смысла стремиться к бесконечной точности при построении модели. Для выяснения необходимой степени адекватности обычно строят ряд моделей, начиная с грубых, простых моделей и двигаясь ко все более сложным и точным. Как только затраты на построение очередной модели начинают превышать планируемую отдачу от модели, то уточнение модели прекращают. Первоначальные шаги производятся в каком-либо существующем универсальном моделирующем пакете. После одобрения модели под неё пишется специализированный пакет. Необходимость в этом возникает в случае, если функционирование модели в универсальной среде моделирования не удовлетворяет требованиям быстродействия (или каким-то другим).

Моделирование — прикладная инженерная наука класса технологических. Моделирование — дисциплина, ставящая целью построение моделей и их исследование посредством собственных универсальных методов, а также специфических методов смежных с ней наук (математика, исследование операций, программирование).

Физические(материальные) и математические модели.

Физические модели

В основу классификации положена степень абстрагирования модели от оригинала. Предварительно все модели можно подразделить на две группы: материальные (физические) и абстрактные (математические) (рис. 9.1).

Физической моделью обычно называют систему, которая эквивалентна или подобна оригиналу, либо у которой процесс функционирования такой же, как у оригинала, и имеет ту же или другую физическую природу. Можно выделить следующие виды физических моделей: натурные, квазинатурные, масштабные и аналоговые.

Натурные модели – это реальные исследуемые системы. Их на­зывают макетами и опытными образцами. Натурные модели имеют полную адекватность с системой-оригиналом, что обеспечивает высокую точность и достоверность результатов моделирования. Процесс проектирования систем завершается зачастую испытанием опытных образцов.

 

Рис. 9.1. Классификация моделей

Квазинатурные модели представляют собой совокупность натурных и математических моделей [4]. Этот вид моделей используется в случаях, когда математическая модель части системы не является удовлетворительной (например, модель человека-оператора) или когда часть системы должна быть исследована во взаимодействии с остальными частями, но их еще не существует, либо их включение в модель затруднено или дорого. Примерами квазинатурных моделей могут служить вычислительные полигоны, на которых отрабатывается программное обеспечение различных систем, или реальные АСУ, исследуемые совместно с математическими моделями соответствующих производств [5

Масштабная модель – это система той же физической природы, что и оригинал, но отличающаяся от него масштабами. Методологической основой масштабного моделирования является теория подобия, которая предусматривает соблюдение геометрического подобия оригинала и модели и соответствующих масштабов для их параметров. При проектировании систем масштабные модели могут использоваться для анализа вариантов компоновочных решений по конструкции системы и ее элементов.

Аналоговыми моделями называются системы, имеющие физическую природу, отличающуюся от оригинала, но сходные с оригиналом процессы функционирования. Обязательным условием при этом является однозначное соответствие между параметрами изучаемого объекта и его модели, а также тождественность безразмерных математических описаний процессов, протекающих в них. Для создания аналоговой модели требуется наличие мате­матического описания изучаемой системы. Аналоговые модели используют при исследовании средств вычислительной техники на уровне логических элементов и элек­трических цепей, а также на системном уровне, когда функциони­рование системы описывается, например, дифференциальными или алгебраическими уравнениями.

Математические модели

Математическая модель представляет собой формализованное описание системы с помощью абстрактного языка, в частности, с помощью математических соотношений, отражающих процесс функционирования системы. Для составления модели можно использовать любые математические средства – алгебраическое, дифференциальное и интегральное исчисление, теорию множеств, теорию алгоритмов и т.д. По существу, вся математика создана для составления и исследования моделей объектов или процессов.

Цели моделирования и характерные черты оригинала определяют, в конечном счете, ряд других особенностей моделей и методы их исследования. Например, математические модели можно классифицировать на детерминированные и вероятностные (стохастические).

Первые устанавливают однозначное соответствие между параметрами и характеристиками модели, а вторые – между статистическими значениями этих величин. Выбор того или иного вида модели обусловлен степенью необходимости учета случайных факторов.

Среди математических моделей можно выделить по методу их исследования аналитические, численные и имитационные модели.

Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат.

Численная модель характеризуется зависимостью такого вида, который допускает только частные численные решения для конкретных начальных условий и количественных параметров модели.

Имитационная модель – это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использовать имеющиеся математические методы аналитического и численного решения, но позволяют имитировать процесс функционирования системы и производить измерения интересующих характеристик.

Имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные модели. Поскольку для реализации имитационных моделей используются, как правило, вычислительные системы, средствами формализо­ванного описания имитационных моделей служат, зачастую, уни­версальные или специальные алгоритмические языки.

 

Выбор метода моделирования

Аналитические методы

Разработанная математическая модель функционирования системы может быть исследована различными методами – аналитическими или имитационными. С помощью аналитических методов анализа можно провести наиболее полное исследование модели. Для использования аналитических методов необходимо математическую модель преобразовать к виду явных аналитических зависимостей между характеристиками и параметрами системы и внешних воздействий. Однако это удается лишь для сравнительно простых систем. Применение аналитиче­ских методов для более сложных систем связано с большей, по сравнению с другими методами, степенью упрощения реальности и абстрагирования. Поэтому аналитические методы исследования используются обычно для первоначальной грубой оценки характеристик всей системы или отдельных ее подсистем, а также на ранних стадиях проектирования систем, когда недостаточно информации для построения более точной модели.

Имитационные методы

Имитационное моделирование является наиболее универсальным методом исследования систем и количественной оценки характеристик их функционирования. При имитационном моделировании динамические процессы системы-оригинала подменяются процессами, имитируемыми в абстрактной модели, но с соблюдением таких же соотношений длительностей и временных последовательностей отдельных операций. Поэтому метод имитационного моделирования мог бы называться алгоритмическим или операционным. В процессе имитации, как при эксперименте с оригиналом, фиксируют определенные события и состояния или измеряют выходные воздействия, по которым вычисляют характеристики качества функционирования системы. Имитационное моделирование позволяет рассматривать процессы, происходящие в системе, практически на любом уровне детализации. Используя алгоритмические возможности ПК, в имитационной модели можно реализовать любой алгоритм управления или функционирования системы.

Численные методы

Численное моделирование допускает только частные численные решения для конкретных начальных условий и количественных параметров модели.

Модели, которые допускают исследование аналитическими методами, также могут анализироваться имитационными методами. Все это является причиной того, что имитационные методы моделирования становятся основ­ными методами исследования сложных систем.

Методы имитационного моделирования различаются в зависимости от класса исследуемых систем, способа продвижения модельного времени и вида количественных переменных параметров системы и внешних воздействий.

В первую очередь можно разделить методы имитационного моделирования дискретных и непрерывных систем. Если все элементы системы имеют конечное множество состояний, и переход из одного состояния в другое осуществляется мгновенно, то такая система относится к системам с дискретным изменением состояний, или дискретным системам. Если переменные всех элементов системы изменяются постепенно и могут принимать бесконечное множество значений, то такая система называется системой с непрерывным изменением состояний, или непрерывной системой. Системы, у которых имеются переменные того и другого типа, считаются дискретно-непрерывными.

Особое значение имеет стационарность или нестационарность случайных, независимых переменных системы и внешних воздей­ствий. При нестационарном характере переменных, в первую очередь внешних воздействий, что часто наблюдается на прак­тике, должны быть использованы специальные методы моделиро­вания, в частности, метод повторных экспериментов.

Еще одним классификационным параметром следует считать схему формализации, принятую при создании математической модели. Здесь, прежде всего, необходимо разделить методы, ориентированные на алгоритмический (программный) или структурный (агрегатный) подход. В первом случае процессы управляют элементами (ресурсами) системы, а во втором – элементы управляют процессами, определяют порядок функционирования системы.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2022 pdnr.ru Все права принадлежат авторам размещенных материалов.