Пиши Дома Нужные Работы

Обратная связь

Примеры математических моделей в различных отраслях знаний.

Примеры применения:

В физике: задача о движении снаряда

Снаряд пущен с Земли с начальной скоростью v0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Пренебрегая размерами снаряда, будем считать его материальной точкой. Введем систему координат xOy, совместив ее начало O с исходной точкой, из которой пущен снаряд, ось x направим горизонтально, а ось y — вертикально (рис. 1).

Рис. 1

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t — время, g = 10 м/с2 — ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x1 = 0 (начало траектории) и (место падения снаряда).

В химии: Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

yэ(3) = – 42°, yэ(4) = 0°, yэ(5) = 28°, yэ(6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » an + b,

где a, b — константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:



– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a, b » – 4a, b » 28 – 5a, b » 69 – 6a.

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a. Подставим в исходную систему уравнений это значение b и, вычисляя a, получим для a следующие значения: a»37, a»28, a»28, a»36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a»34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

yр(3) = – 37°, yр(4) = – 3°, yр(5) = 31°, yр(6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: yр(7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения yэ(7) = 98°.

 

19. Имитационное моделирование. Этапы имитационного моделирования.Отличительные признаки методов математического и имитационного моделирования. Имитационные эксперименты.

Имитационное моделирование - техника численных экспериментов, с помощью которых можно получить эмпирические оценки степени влияния различных факторов - исходных величин, которые точно не определены, на зависящие от них результаты - показатели.

Целью имитационного моделирования является построение вероятностных распределений для возможных значений выходной стохастической переменной при случайном изменении входных стохастических переменных {xi, }.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы во времени. Имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени [42].

Основным преимуществом имитационных моделей по сравнению с аналитическими является возможность решения более сложных задач. Имитационные модели позволяют легко учитывать наличие дискретных или непрерывных элементов, нелинейные характеристики, случайные воздействия и др. Поэтому этот метод широко применяется на этапе проектирования сложных систем. Основным средством реализации имитационного моделирования служит ЭВМ, позволяющая осуществлять цифровое моделирование систем и сигналов.

При имитационном моделированиииспользуемая ММ воспроизводит алгоритм («логику») функционирования исследуемой системы во времени при различных сочетаниях значений параметров системы и внешней среды. Примером простейшей аналитической модели может служить уравнение прямолинейного равномерного движения. При исследовании такого процесса с помощью имитационной.

Имитационные модели не только по свойствам, но и по структуре соответствуют моделируемому объекту. При этом имеется однозначное и явное соответствие между процессами, получаемыми на модели, и процессами, протекающими на объекте. Недостатком имитационного моделирования является большое время решения задачи для получения хорошей точности.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2022 pdnr.ru Все права принадлежат авторам размещенных материалов.