Тема 2. Пересечение поверхностей.
ВОЛЖСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ
ВОДНОГО ТРАНСПОРТА
Кафедра начертательной геометрии и графики
В.А. Анисимов, И.С. Ерлыкина, А.Ю. Логинов, С.Н. Утрминцева
НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ
Под общей редакцией В.А. Анисимова
Н. Новгород
2000 г.
Аннотация
Настоящие методические указания предназначены для студентов заочного обучения инженерно – технических специальностей.
Студенты, пользуясь указаниями, индивидуальными заданиями и типовыми чертежами, могут самостоятельно проработать материал и выполнить контрольные работы по установленной программе.
ВВЕДЕНИЕ
Начертательная геометрия изучается студентами – заочниками в объеме программы по начертательной геометрии и черчению с учетом программы по инженерной графике для инженерно – технических специальностей высших учебных заведений.
Программы едины для дневной, вечерней и заочной формы обучения.
Самостоятельная работа студентов – заочников по курсу начертательной геометрии складывается из проработки теоретического материала и выполнения контрольной работы по индивидуальным заданиям. Вариант задания определяется двумя последними цифрами шифра студента. Так при шифре СМ-05-2655 выполняется вариант 55, при шифре СМ-05-2800 - вариант 100.
При работе над курсом начертательной геометрии студента должны использовать «Методические указания», в которых приводится рабочая программа курса, даются общие методические указания, излагается содержание контрольных работ и указания к их выполнению, а также приводится перечень (таблицы) самих заданий всех 100 вариантов.
Кроме того, для студентов читаются курсы обзорных и установочных лекций, проводятся циклы практических занятий, обеспечиваются регулярные консультации и обязательные встречи с преподавателем для защиты работ.
Настоящее издание методических указаний отличается тем, что здесь вводится система обозначений Четверухина Н.Ф.
Рекомендуемая программами учебная литература, то есть учебники Фролова С.А. «Начертательная геометрия», 1983 года Бубенникова А.В. «Начертательная геометрия», 1985 года издания и соответствующие им сборники задач (тех же авторов) тяготеют именно к названной системе обозначений.
Предлагаемая система обозначений прилагается в конце методических указаний в составе таблицы условных обозначений (табл. 8).
Могут использоваться учебники более ранних или более поздних изданий и учебники других авторов, несмотря на возможную разницу в обозначениях, поскольку указание в рабочей программе темы курса содержаться в любом учебнике по начертательной геометрии.
Студенты всех специальностей изучают начертательную геометрию на 1 курсе. Изучение дисциплины заканчивается экзаменом.
Экзамен проводится по разработанным на кафедре экзаменационным билетам, требующим графических построений и следовательно, наличия у студентов соответствующих чертежных инструментов.
Рабочая программа для студентов технических специальностей.
Таблица 1.
Номер темы
| Содержание работы
| Формат листов
| 1.
| Способы преобразования чертежа.
| А3 х 1
| 2.
| Пересечение поверхностей.
| А3 х 1
|
Общие методические указания
Работа над учебником.
Изучение курса следует проводить в указанной в рабочей программе последовательности. Рекомендуется первым прочтением параграфов, относящихся к той или иной теме, составить как бы общее представление о предмете и выявить наиболее трудные места. Затем, путем тщательной проработки материала учебника, уяснить основные положения и выводы.
Контрольная работа
Контрольная работа состоит из двух чертежей. Для чертежей используется специальная чертежная бумага - ватман, размерами 297 мм х 420 мм (формат А3 по ГОСТ 2.301-68 ЕСКД). Все построения выполняются карандашом с помощью чертежных инструментов в масштабе 1:1. Необходимо следовать правилам Государственных стандартов на линии и шрифты (ГОСТы 2.303-68 и 3.304-81 ЕСКД). Основная надпись чертежа по ГОСТ 2.104-68.
Завершенная работа представляется на рецензирование в полном объеме. Работа защищается при личной встрече с преподавателем в отведенные для этих целей специальные часы.
Экзамен по курсу.
Экзамен принимается после зачтения (защиты) обязательной контрольной работы.
Темы курса, обязательные для изучения:
Тема 1.
Метрические задачи. Определение расстояний, углов и форм плоских фигур. Способы преобразования чертежа. Замена плоскостей проекцией. Вращение вокруг проецирующих прямых и прямых уровня. Совмещение. Плоско – параллельное перемещение.
Тема 2.
Взаимное пересечение поверхностей. Построение линии пересечения поверхностей способами вспомогательных секущих плоскостей частного положения и концентрических сфер. Частные случаи пересечения.
Тема 1. Способы преобразование чертежа
По теме 1 должны быть решены три задачи способами преобразования чертежа.
В табл. 3. Даны варианты координат вершин пирамиды SABC в миллиметрах.
Задача № 1. Определить истинную величину основания ABC пирамиды. Вариант способа решения указан в табл. 4 индивидуальных заданий, а именно :
а) вращением вокруг горизонтали, или
б) вращением вокруг фронтали, или
в) совмещение с горизонтальной плоскостью проекций П1, или
г) совмещение с фронтальной плоскостью проекций П2.
Задача № 2. Определить способом вращения без указания оси вращения расстояние от вершины S до плоскости основания (высоту пирамиды) и угол наклона плоскости основания к горизонтальной (или фронтальной, в зависимости от варианта ) плоскости проекций.
Задача № 3. Определить способом замены плоскостей проекций:
а) величину двугранного угла между гранями, указанными в задании (см. табл. 3), или
б) кратчайшее расстояние между ребрами пирамиды и стороной ее основания с построением проекций искомого отрезка в основной системе плоскостей проекций.
Таблица 3
варианты
| точки
| Координаты (мм)
| варианты
| точки
| Координаты (мм)
| х
| у
| z
| х
| у
| z
| С 1 по 4
| А
|
|
|
| С 41 по 44
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 5 по 8
| А
|
|
|
| С 45 по 48
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 9 по 12
| А
|
|
|
| С 49 по 52
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 13 по 16
| А
|
|
|
| С 53 по 56
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 17 по 20
| А
|
|
|
| С 57 по 60
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 21 по 24
| А
|
|
|
| С 61 по 64
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 25 по 28
| А
|
|
|
| С 65 по 68
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 29 по 32
| А
|
|
|
| С 69 по 72
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 33 по 36
| А
|
|
|
| С 73 по 76
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 37 по 40
| А
|
|
|
| С 77 по 80
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| варианты
| точки
| Координаты (мм)
| варианты
| точки
| Координаты (мм)
| х
| у
| z
| х
| у
| z
| С 81 по 84
| А
|
|
|
| С 93 по 96
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 85 по 88
| А
|
|
|
| С 97 по 100
| А
|
|
|
| В
|
|
|
| В
|
|
|
| С
|
|
|
| С
|
|
|
| S
|
|
|
| S
|
|
|
| С 89 по 92
| А
|
|
|
|
|
|
|
|
| В
|
|
|
|
|
|
|
| С
|
|
|
|
|
|
|
| S
|
|
|
|
|
|
|
|
Таблица 4
№ варианта
| Тема 1
| Задача № 1
| Задача № 2
| Задача № 3
| Применить способ вращения или совмещения
| Найти угол наклона к плоскости проекций
| Найти угол между гранями или расстояние между ребрами
|
| Вокруг горизонтали
| П1
| Грани SAB и ABC
|
| Вокруг фронтали
| П2
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П2
| Грани SAC и АСВ
|
| Совместить с пл. пр. П2
| П1
| Ребра SB и АС
|
| Вокруг фронтали
| П2
| Ребра SC и АВ
|
| Вокруг горизонтали
| П1
| Грани SBC и АСВ
|
| Совместить с пл. пр. П2
| П1
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П2
| Грани SAB и АВС
|
| Вокруг горизонтали
| П1
| Ребра SB и АС
|
| Вокруг фронтали
| П2
| Грани SAC и АВС
|
| Совместить с пл. пр. П1
| П1
| Ребра SC и АВ
|
| Совместить с пл. пр. П2
| П2
| Грани SBC и АСВ
|
| Вокруг горизонтали
| П2
| Грани SAB и ABC
|
| Вокруг фронтали
| П1
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П2
| Грани SAC и АСВ
|
| Совместить с пл. пр. П2
| П1
| Ребра SB и АС
|
| Совместить с пл. пр. П1
| П2
| Грани SBC и АСВ
|
| Совместить с пл. пр. П2
| П2
| Грани SAC и АСВ
|
| Вокруг горизонтали
| П1
| Ребра SC и АВ
|
| Вокруг фронтали
| П1
| Ребра SB и АС
|
| Вокруг горизонтали
| П2
| Грани SAB и ABC
|
| Вокруг фронтали
| П1
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П2
| Грани SBC и АСВ
|
| Совместить с пл. пр. П2
| П1
| Ребра SB и АС
|
| Вокруг фронтали
| П2
| Грани SAB и ABC
|
| Совместить с пл. пр. П2
| П1
| Ребра SC и АВ
|
| Вокруг горизонтали
| П1
| Грани SAC и SAB
|
| Совместить с пл. пр. П1
| П2
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П1
| Грани SBC и SBA
|
| Вокруг горизонтали
| П2
| Ребра SB и АС
|
| Вокруг фронтали
| П2
| Грани SAB и SAC
|
| Совместить с пл. пр. П2
| П1
| Ребра SC и АВ
|
| Вокруг горизонтали
| П2
| Грани SAC и SAB
|
| Вокруг фронтали
| П1
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П2
| Грани SBC и SBA
|
| Совместить с пл. пр. П2
| П1
| Ребра SB и АС
|
| Вокруг фронтали
| П2
| Грани SAB и SAC
|
| Вокруг горизонтали
| П1
| Ребра SC и АВ
|
| Совместить с пл пр. П1
| П2
| Грани SAB и АВС
|
| Совместить с пл. пр. П2
| П1
| Ребра SA и ВС
|
| Вокруг горизонтали
| П2
| Грани SBC и АВС
|
| Совместить с пл. пр. П1
| П1
| Ребра SB и АС
|
| Вокруг фронтали
| П2
| Грани SAC и АВС
|
| Совместить с пл. пр. П2
| П1
| Ребра SC и АВ
|
| Вокруг горизонтали
| П2
| Грани SAB и АВС
|
| Вокруг фронтали
| П1
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П2
| Грани SBC и АВС
|
| Совместить с пл. пр. П2
| П1
| Ребра SB и АС
|
| Вокруг фронтали
| П2
| Грани SAC и АВС
|
| Вокруг горизонтали
| П1
| Ребра SC и АВ
|
| Совместить с пл. пр. П2
| П2
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П1
| Грани SAB и АВС
|
| Вокруг горизонтали
| П2
| Грани SAC и АВС
|
| Вокруг фронтали
| П1
| Ребра SB и AC
|
| Совместить с пл. пр. П1
| П2
| Ребра SC и АВ
|
| Совместить с пл. пр. П2
| П1
| Грани SBC и АВС
|
| Вокруг фронтали
| П2
| Грани SAB и АВС
|
| Вокруг горизонтали
| П1
| Ребра SA и ВС
|
| Совместить с пл. пр. П2
| П2
| Грани SBC и АВС
|
| Совместить с пл. пр. П1
| П1
| Ребра SB и АС
|
| Вокруг горизонтали
| П2
| Грани SAC и АВС
|
| Совместить с пл. пр. П1
| П1
| Ребра SC и АВ
|
| Вокруг фронтали
| П2
| Грани SAB и АВС
|
| Совместить с пл. пр. П2
| П1
| Ребра SA и ВС
|
| Вокруг фронтали
| П2
| Грани SBC и АВС
|
| Вокруг горизонтали
| П1
| Ребра SB и АС
|
| Совместить с пл. пр. П1
| П2
| Грани SAC и SBC
|
| Совместить с пл. пр. П2
| П1
| Ребра SC и АВ
|
| Вокруг горизонтали
| П2
| Грани SAB и SBC
|
| Вокруг фронтали
| П1
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П2
| Грани SAC и АВС
|
| Совместить с пл. пр. П2
| П1
| Ребра SB и АС
|
| Вокруг горизонтали
| П2
| Грани SBC и АВС
|
| Вокруг фронтали
| П1
| Ребра SC и АВ
|
| Совместить с пл. пр. П2
| П2
| Грани SAB и АSC
|
| Совместить с пл. пр. П1
| П1
| Ребра SA и ВС
|
| Вокруг горизонтали
| П2
| SAC SBC
|
| Совместить с пл. пр. П2
| П1
| SB
|
| Вокруг фронтали
| П2
| SBC ABS
|
| Совместить с пл. пр. П1
| П2
| Ребра SC и АВ
|
| Вокруг фронтали
| П1
| Ребра SA и ВС
|
| Совместить с пл. пр. П1
| П2
| Грани SBC и ABC
|
| Вокруг горизонтали
| П1
| Грани SAB и ABC
|
| Совместить с пл. пр. П2
| П2
| Ребра SB и AC
|
| Вокруг горизонтали
| П1
| Грани SAC и ABC
|
| Вокруг фронтали
| П2
| Ребра SC и АВ
|
| Совместить с пл. пр. П1
| П1
| Грани SBC и ABS
|
| Совместить с пл. пр. П2
| П2
| Ребра SA и ВС
|
| Вокруг фронтали
| П1
| Грани SAB и ASC
|
| Вокруг горизонтали
| П2
| Ребра SB и AC
|
| Совместить с пл. пр. П1
| П1
| Грани SAC и SBC
|
| Совместить с пл. пр. П2
| П2
| Ребра SC и АВ
|
| Вокруг горизонтали
| П1
| Грани SBC и ABC
|
| Совместить с пл. пр. П1
| П2
| Ребра SA и ВС
|
| Вокруг фронтали
| П1
| Грани SAB и ABC
|
| Совместить с пл. пр П2
| П2
| Ребра SB и AC
|
| Вокруг фронтали
| П1
| Грани SAC и SBC
|
| Вокруг горизонтали
| П2
| Ребра SC и АВ
|
| Совместить с пл. пр. П1
| П1
| Грани SBC и ABS
|
| Совместить с пл. пр. П2
| П2
| Ребра SA и ВС
|
В первой задаче для определения истиной величины основания АВС пирамиды нужно, применив способ вращения, поставить плоскость треугольника АВС в положение параллельное одной из плоскостей проекций или совместить с одной из них. Тогда на эту плоскость проекций треугольник АВС спроецируется в истинную величину.
Если треугольник повернуть вокруг одной из его горизонталей, то он займет положение параллельное горизонтальной плоскости проекций. Если за ось вращения выбрать фронталь, то треугольник АВС можно повернуть до положения параллельного фронталньой плоскости проекций. При вращении плоскости основания АВС вокруг горизонтального следа совмещают ее с плоскостью проекций П1, а вращение вокруг фронтального - с плоскостью проекций П2.
На рис. 3 истинная величина треугольника АВС определена вращением его вокруг горизонтали А1 до положения параллельного плоскости проекций П1.
Решение задачи ведется по следующему плану:
1) проводится ось вращения (А1);
2) строятся плоскости вращения для каждой вращаемой вершины (Θ и Σ перпендикулярные к А1);
3) находятся центры вращения (О и О1) каждой вращаемой вершины;
4) определяется истинная величина радиуса вращения (О1В0) вершины В;
5) находятся положения точек (В11 и С11) после осуществления процесса вращения на следах их плоскостей вращения.
Во второй задаче искомое расстояние от вершины S до основания АВС пирамиды измеряется величиной перпендикуляра опущенного из точки S на плоскость основания. Если способом вращения вокруг оси, перпендикулярной к одной из плоскостей проекций, поставить треугольник АВС в положение, перпендикулярное к другой плоскости проекций (т.е. в проецирующее), то перпендикуляр к плоскости ∆ АВС, опущенный из точки S, окажется параллельным этой плоскости проекций и с проецируется на нее в истинную величину.
Основание пирамиды АВС, заняв проецирующее положение, изобразится на плоскости проекций, к которому оно перпендикулярно, в виде отрезка прямой линии и угол наклона этого отрезка к оси Х составит линейный угол, которым будут измеряться другранный угол наклона плоскости основания пирамиды к той плоскости проекций, перпендикулярно к которой была выбрана ось вращения. Поэтому, если требуется определить угол наклона плоскости основания к плоскости проекций П1, то за ось вращения следует выбирать прямую, перпендикулярную к П1, а если нужно узнать угол наклона к плоскости проекций П2, то и ось вращения должна быть перпендикулярна к этой плоскости проекций. Однако, если учесть, что размеры и форма горизонтальной проекции плоской фигуры не изменяется, если ось вращения перпендикулярна к горизонтальной плоскости проекций, то и ось вращения на эпюре можно не указывать, а лишь подразумевать.
На рис. 3 наряду с определение расстояния от точки S до плоскости основания пирамиды определен угол наклона основания к плоскости проекций П1 (угол α).
Задача решалась по следующему плану:
1) ось вращения подразумевали расположенной перпендикулярно к плоскости проекций П1)
2) горизонтальную проекцию пирамиды А1В1С1S1 перевели в новое положение, не изменяя ее формы и размеров так, чтобы горизонтальная проекция А111 горизонтали треугольника АВС заняла положение перпендикулярное к оси Х (это соответствует тому, что в пространстве горизонталь А1, а вместе с ней и плоскость основания АВС оказались перпендикулярны к плоскости проекций П2);
3) на фронтальной плоскости проекций провели следу плоскостей вращения параллельно оси Х для всех вращаемых вершин;
4) построили фронтальные проекции вершин плоскости основания АВС (отрезок прямой) и вершины S;
5) построили истинную величину высоты пирамиды, опустив перпендикуляр из нового положения проекции S22 точки S на проекцию ∆ АВС (отрезок С22 В22) и нашли горизонтальную проекцию перпендикуляра;
6) отметили угол наклона фронтальной проекции ∆ АВС (отрезок прямой С22 В22) к оси Х (угол α), которым измеряется угол наклона плоскости основания пирамиды к плоскости проекций П1.
Третья задача решается способом замены плоскостей проекций. Если при решении задачи в задании требуется определить величину двугранного угла между гранями пирамиды, то нужно так преобразовать чертеж, чтобы общее для этих граней ребро заняло положение перпендикулярное к одной из плоскостей проекций, так как мерой двугранного угла между гранями служит линейный угол, который получается в результате пересечения граней плоскостью, перпендикулярной к общему ребру.
На рис. 4 показано определение угла между гранями АВС и АВС (угла φ) для этого ребро АВ поставлено в положение перпендикулярное к плоскости проекций П5.
План решения задачи:
1) заменяем плоскость проекций П1 на П4 и ставим последнюю в положение параллельное ребру АВ (ось х2 4 параллельна А2В2);
2) заменяем плоскость проекций П2 на П5, располагая плоскость П5 перпендикулярно к ребру АВ (ось х45 А4В4);
На плоскость проекций П5 ребро АВ выродится в точку и искомый линейный угол спроецируется без искажения.
Для определения кратчайшего расстояния между двумя скрещивающимися ребрами следует так сменить плоскости проекций, чтобы одно из этих ребер спроецировалось на плоскость проекций в виде точки (заняло проецирующее положение). Тогда истинная величина искомого расстояния будет равна проекции отрезка перпендикуляра, опущенного из этой точки на проекцию второй прямой.
Тема 2. Пересечение поверхностей.
По теме 4 следует решить две задачи на построение линий пересечения поверхностей.
К моменту выполнения задания должны быть проработаны все темы рабочей программы. Одна из задач темы 2 решается способом вспомогательных секущих плоскостей уровня, другая задача - способом сфер.
Форма и размеры геометрических тел для первой задачи выбираются по рис. 7 или 8 и табл. 6, а для второй задачи - по рис. 9 или 10 и табл. 7 в соответствии с номером варианта. Обе задачи решаются на одном листе форма А3. Размеры тел на чертежах не приводятся.
Построение линии пересечения заданных тел следует начинать с построения опорных точек искомой кривой. Такими точками являются:
1) точки, проекции которых лежат на проекциях контурных образующих (очерках) заданных тел;
2) «крайние» точки - правые и левые, наивысшие и наинизшие, ближайшие и наиболее удаленные.
Все построенные проекции точек, принадлежащих линии пересечения, должны иметь на чертеже соответствующие обозначения.
Все линии построения опорных и промежуточных точек на чертеже необходимо сохранять и выполнять сплошными тонкими линиями.
Таблица 6.
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 6
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 6
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 6
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 6
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 6
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 6
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 6
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Таблица 7.
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 7
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 7
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
| А, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 7
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
| αº
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 7
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
| αº
|
|
|
|
|
|
|
|
|
|
|
|
|
Продолжение таблицы 7
Номер варианта
|
|
|
|
|
|
|
|
|
|
|
|
|
| фигура
|
| d, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
| d1, мм
|
|
|
|
|
|
|
|
|
|
|
|
|
| | | | | | | | | | | | | | | | | | |
Продолжение таблицы 7
|