Пиши Дома Нужные Работы

Обратная связь

Особенности тяговой сети и принятые допущения

Для устройств электроснабжения электрифицированной железной дороги тяговая сеть является основным видом влияющей цепи. Она включает в свой состав тяговую подстанцию, электровозы и тяговую сеть. В тяговую сеть входят питающие и отсасывающие провода, провода контактной сети, рельсы с распределенной проводимостью на землю и сама земля. Влияющее напряжение тяговой сети равно рабочему напряжению контактной сети, а ток в земле по модулю соизмерим с током контактной сети. Поэтому тяговая сеть практически полностью несимметрична и оказывает сильное влияние на соседние цепи.

При рассмотрении влияния тяговой сети на смежные линии придется считаться с распределенностью системы и с большой ее электрической длиной. Для упрощения далее приняты во внимание следующие допущения:

1) при анализе влияния тяговой сети вначале будет рассмотрено влияние только контура контактная сеть - земля; влияние рельсов будет учтено несколько позже;

2) смежную линию будем считать однородной и вначале однопроводной, затем перейдем к двухпроводной линии как к сочетанию двух однопроводных;

3) сближение с контактной сетью будем считать параллельным и вначале будем полагать длину сближения равной длине смежной линии;

4) напряжения и токи в контактной сети и в смежной линии считаются синусоидальными, во всяком случае, речь будет идти о гармонических синусоидальных составляющих при учете несинусоидальности.

2.2. Простейшая линия и ее параметры

Наиболее распространенным механизмом для анализа процессов в электрических цепях и предсказания их поведения являются законы Кирхгофа в совокупности с законом Ома и производные от них методы (контурных токов, узловых потенциалов, узловых напряжений и другие). К сожалению, все эти методы не учитывают запаздывание распространения электромагнитного поля и годятся только для электрически коротких цепей. Кроме того, все элементы электрической цепи рассматриваются квантованно, то есть распределенность элементов никак не учитывается, что не позволяет говорить о распределении потенциала по элементу даже в случае электрически малой его длины.



Максимальная скорость распространения электромагнитного поля в пространстве составляет 300 м/мкс. Цепь будет электрически короткой, если время распространения поля вдоль нее много меньше времени существенного изменения напряжения или тока в цепи; считается, что для синусоидальных напряжений и токов можно говорить о небольшой длине линии, если время распространения поля вдоль нее не превышает одной десятой периода напряжения. Для двухпроводной воздушной линии с расстоянием между проводами 3 м, высоте расположения проводов над землей 30 м и длине линии 30 км время распространения поля между проводами составит 0.01 мкс, между проводами и землей - 0.1 мкс, вдоль линии - 100 мкс, так что для электромагнитных процессов между проводами можно говорить о малых расстояниях между проводами до частот 10 Мгц, между проводами и землей - до 1 Мгц, а вдоль проводов - до частот не более 1 кГц, что соответствует частотам высших гармоник электроэнергетических систем. Именно до таких частот можно предсказывать поведение двухпроводной системы с помощью законов Кирхгофа и производных от них методов; далее нужно использовать что-нибудь другое.

Двухпроводная линия, кроме всего прочего, является простейшей из многопроводных линий, составленных из тонких параллельных друг другу проводов. Почему это так? Потому, что более простая по конструкции однопроводная линия либо использует землю в качестве обратного провода и надо заниматься вопросами распределения тока в проводящей земле, то есть теорией поля, что очень непросто; либо один провод излучает электромагнитное поле в окружающее пространство (если земля электрически далеко), что в общем случае ничуть не проще, чем с землей. Когда же проводов два, а расстояние между ними много меньше расстояния до земли, то два этих провода являются самодостаточной системой, земля им не нужна, поскольку электрическое поле двух противоположно заряженных проводов уменьшается с ростом расстояния от проводов по кубическому закону и земле почти ничего не перепадает; примерно такая же картина получается и с магнитным полем, когда токипо проводам по соседству (в одном сечении перпендикулярно проводам) протекают одинаковые и противоположных направлений.

Так что пока речь пойдет о двухпроводной линии, для которой можно не учитывать наличие расположенных вблизи нее предметов (рис. 3). Источник ЭДС в начале линии обеспечивает такое разделение зарядов, что на одном проводе будет заряд +q, а на другом -q, а также и токи в проводах оказываются одинаковыми и противоположно направленными. Если на некотором расстоянии x от начала линии выделить электрически короткий участок dx, то можно обойти трудность, связанную с невозможностью применения законов Кирхгофа к длинной линии; на малой длине dx при малости расстояний h и d по сравнению с длиной l линии на участке dx законы Кирхгофа вполне применимы! Однако вначале следует составить схему замещения участка dx, что сделано на рис. 4а. На нем элементы dR' и dR" отражают потери энергии в проводах на их нагрев, dL', dL" и dM отображают собственные индуктивности проводов и их взаимосвязь через магнитное поле, причем начала катушек расположены слева, но направления токов в катушках противоположны, что отвечает частичной взаимной компенсации магнитных полей двух проводов; емкостный элемент dC отображает запас энергии в электрическом поле между проводами, а проводимость dG соответствует утечке по изоляции между проводами.

Поскольку токи в верхнем и нижнем проводах одинаковы, можно объединить нижние элементы с верхними, оставив внизу только общий провод, при этом потенциалы проводов будут другими, но напряжения между проводами не изменятся, так что схема рис. 4б вполне пригодна для дальнейшего анализа. На этой схеме ток i и напряжение u являются функциями координаты и времени i=i(x,t), u=u(x,t) и при приросте переменной x на малую величину dx они прирастают на малые величины di и du. Можно считать, что параметры схемы замещения пропорциональны длине dx, то есть

dR = R0 dx, dL = L0 dx, dC = C0 dx, dG = G0 dx,

где величины R0 (Ом/км), L0 (Гн/км), C0 (Ф/км), G0 (См/км), называемые первичными параметрами линии, не зависят от координаты x в случае однородной линии, то есть такой линии, у которой провода и их взаимное расположение одинаковы по всей длине линии. Эти параметры не зависят обыкновенно также и от времени t. Смысл параметров следующий: R0, L0 - это сопротивление и индуктивность линии длиной 1 км, замкнутой на конце, а C0, G0 - емкость и проводимость утечки по изоляции для линии длиной 1 км с изолированными друг от друга проводами.

Рис. 3

Рис. 4

Уравнения по законам Кирхгофа для малого участка dx по рис. 4б выглядят следующим образом:

что после простейших преобразований приводит к системе дифференциальных уравнений в частных производных, называемых телеграфными уравнениями длинной линии:

(1)

Эти уравнения достаточно просто разрешаются для синусоидальных токов и напряжений, u = Um e j(ωt + Ψ), i = Im ej(ωt + ψ), когда производные по времени заменяются произведением на комплексное действующее значение напряжения или тока (j - мнимая единица, ω - круговая частота):

(2)

где

После дифференцирования первого уравнения системы (2) по переменной x и подстановки в него второго уравнения получается уравнение вида

решением которого является выражение (3)

(3)

представляющее собою сумму отраженной и падающей волн, распространяющихся в направлении убывания координаты x и в направлении нарастания соответственно. Величина , определяющая этот процесс, называется постоянной распространения. Она составлена вещественной и мнимой частями, , которые называют соответственно коэффициентом затухания (он определяет уменьшение амплитуды напряжения после 1 км распространения) и коэффициентом фазы (этот коэффициент определяет набег фазы напряжения через 1 км). Единицы их измерения - 1/км; иногда применяются для коэффициента затухания единица Нп/км (непер на километр), поскольку коэффициент стоит в показателе экспоненты, и Нп/км - это то же, что и 1/км. Для коэффициента фазы часто вместо 1/км указывают рад/км (что то же самое), поскольку этот коэффициент является показателем мнимой экспоненты, то есть аргументом синуса и косинуса в разложении мнимой экспоненты.

Для определения тока достаточно подставить решение (3) в первое уравнение системы (2), при этом получается выражение (4)

(4)

в котором ток также представлен суперпозицией отраженной и падающей волн. В выражениях (3) и (4) - комплексные константы, определяемые источником энергии и нагрузкой в начале и в конце линии, а

называется волновым сопротивлением линии, поскольку определяет соотношение между волнами напряжения и тока. Величины и называют еще вторичными параметрами линии.

При задании граничных условий в линии будут определены константы в решении (3) - (4) и могут быть получены формулы с гиперболическими функциями. При рассмотрении процессов, происходящих на частоте 50 Гц, можно пока обойтись без этого, но в дальнейшем, при рассмотрении вопросов расчета мешающих влияний, придется иметь дело со вторичными параметрами линии и с гиперболическими функциями.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.