Обратная связь
|
Оценка адекватности тренда и прогнозирование Для найденного уравнения тренда необходимо провести оценку его надежности (адекватности), что осуществляется обычно с помощью критерия Фишера, сравнивая его расчетное значение Fр с теоретическим (табличным) значением FТ (Приложение 4). При этом расчетный критерий Фишера определяется по формуле (102):
, (102)
где k – число параметров (членов) выбранного уравнения тренда.
Для проверки правильности расчета сумм в формуле (102) можно использовать следующее равенство (103):
. (103)
В нашем примере про ВО равенство (103) соблюдается (необходимые суммы рассчитаны в трех последних столбцах табл. 31): 89410,434 = 9652,171 + 79758,263.
Сравнение расчетного и теоретического значений критерия Фишера ведется при заданном уровне значимости[32]с учетом степеней свободы: и . При условии Fр > FТ считается, что выбранная математическая модель ряда динамики адекватно отражает обнаруженный в нем тренд.
Проверим тренд на адекватность в нашем примере про ВО по формуле (102):
FР = 79758,263*5/(9652,171*1) = 41,32 > FТ, значит, модель адекватна и ее можно использовать для прогнозирования (FТ = 6,61 находим по Приложению 4 в 1-ом столбце [ = k – 1 = 2 – 1 = 1] и 5-й строке [ = n – k = 5]).
Как уже было отмечено ранее, в нашем примере про ВО России можно произвести выравнивание не только по прямой линии, но и по параболе, чего делать не будем, так как уже найденный линейный тренд адекватно описывает тенденцию[33].
При составлении прогнозов уровней социально-экономических явлений обычно оперируют не точечной, а интервальной оценкой, рассчитывая так называемые доверительные интервалы прогноза. Границы интервалов определяются по формуле (104):
, (104)
где – точечный прогноз, рассчитанный по модели тренда; – коэффициент доверия по распределению Стьюдента при уровне значимости и числе степеней свободы =n–1 (Приложение 2)[34]; – ошибка аппроксимации, определяемая по формуле (105):
. (105)
Спрогнозируем ВО России на 2007 и 2008 годы с вероятностью 0,95 (значимостью 0,05), для чего найдем ошибку аппроксимации по формуле (105): = = 43,937 и найдем коэффициент доверия по распределению Стьюдента по Приложению 2: = 2,4469 при = 7 – 1= 6.
Прогноз на 2007 и 2008 годы с вероятностью 0,95 по формуле (104):
Y2007 = (257,671+53,371*4) 2,4469*43,937 или 363,6<Y2007<578,7 (млрд. долл.);
Y2008 = (257,671+53,371*5) 2,4469*43,937 или 417,0<Y2008<632,0 (млрд. долл.).
Как видно из полученных прогнозов, доверительный интервал достаточно широк (из-за достаточно большой величины ошибки аппроксимации). Более точный прогноз можно получить при выравнивании по параболе 2-го порядка[35].
Анализ сезонных колебаний
В рядах динамики, уровни которых являются месячными или квартальными показателями, наряду со случайными колебаниями часто наблюдаются сезонные колебания, под которыми понимаются периодически повторяющиеся из года в год повышение и снижение уровней в отдельные месяцы или кварталы.
Сезонным колебаниям подвержены внутригодовые уровни многих показателей. Например, расход электроэнергии в летние месяцы значительно меньше, чем в зимние; или рыночные цены на овощи в отдельные месяцы далеко не одинаковы.
При графическом изображении таких рядов сезонные колебания проявляются в повышении и снижении уровней в определенные месяцы (кварталы). В качестве иллюстрации рядов с сезонными колебаниями могут служить данные, представленные в табл. 32 и их графическое изображение (рис. 15).
Таблица 32. Динамика производства мороженого предприятием по месяцам, тонн
Номер строки
| Год
| Месяц t
| январь
| февраль
| март
| апрель
| май
| июнь
| июль
| август
| сентябрь
| октябрь
| ноябрь
| декабрь
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Итого
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33,333
| 38,000
| 43,667
| 54,333
| 55,333
| 69,000
| 64,667
| 52,000
| 42,333
| 36,000
| 33,333
| 31,333
|
|
| 0,723
| 0,824
| 0,947
| 1,178
| 1,200
| 1,496
| 1,402
| 1,128
| 0,918
| 0,781
| 0,723
| 0,680
|
Рис. 15. Динамика производства мороженого предприятием по месяцам, тонн
Вместо месячных показателей могут быть квартальные. Если колебания не случайны, то они сохраняются и в квартальных уровнях, как это показано в табл. 33 и на рис. 16, где месячные данные из табл. 32 преобразованы в квартальные.
Таблица 33. Динамика производства мороженого предприятием по кварталам, тонн
Рис. 16. Динамика производства мороженого предприятием по кварталам, тонн
Наблюдение за сезонными колебаниями позволяет устранить их там, где они нежелательны, а также решить ряд практических задач, например, определить потребности в сырье, рабочей силе в тех отраслях, где влияние сезонности велико.
При изучении рядов динамики, содержащих «сезонную волну», ее выделяют из общей колеблемости уровней и измеряют. Существует 2 основных метода для решения этой задачи: расчет индексов сезонности и гармонический анализ.
Индексы сезонности показывают, во сколько раз фактический уровень ряда в определенный момент или интервал времени t больше среднего уровня, либо уровня, вычисляемого по уравнению тренда ( ). Способы расчета индексов сезонности зависят от наличия или отсутствия тренда. Если тренда нет или от незначителен, то для каждого месяца (квартала) индекс сезонности определяется по формуле (106):
, (106)
где Yt – уровень ряда динамики за месяц (квартал) t;
– средний уровень всего ряда динамики.
Индексы сезонности желательно рассчитывать для рядов динамики, длиной в несколько лет, тогда формула индекса сезонности примет следующий вид:
, (107)
где – средний уровень ряда динамики по одноименным месяцам t за T лет.
Например, по данным таблицы 32, представляющим ряд динамики за 3 года, индексы сезонности будем рассчитывать по формуле (107), для чего сначала рассчитаем (4-я строка таблицы 32), а затем, разделив полученные значение на T=3, получим средние уровни за каждый месяц (5-я строка таблицы 32). Средний уровень всего ряда определяем по формуле средней арифметической простой: . В 6-й строке таблицы 32 определены индексы сезонности для каждого месяца по формуле (107), то есть делением значений в 5-й строке на 46,111.
При наличии тренда индексы сезонности определяются определяются аналогично по формулам (106) – (107) с учетом замены на выравненные по уравнению тренда уровни . На основе найденных индексов сезонности и тренда можно спрогнозировать (экстраполировать) ряд динамики по формуле:
. (108)
Особое место при анализе сезонных колебаний занимает гармонический анализ сезонных колебаний, в котором осуществляется выравнивание ряда динамики с помощью ряда Фурье, уровни которого можно выразить как функцию времени следующим уравнением:
. (109)
То есть сезонные колебания уровней динамического ряда можно представить в виде синусоидальных колебаний. Поскольку последние представляют собой гармонические колебания, то синусоиды, полученные при выравнивании по ряду Фурье, называют гармониками различных порядков (показатель k в этом уравнении определяет число гармоник). Обычно при выравнивании по ряду Фурье рассчитывают несколько гармоник (чаще не более 4) и затем уже определяют, с каким числом гармоник ряд Фурье наилучшим образом отражает изменения уровней ряда.
При выравнивании по ряду Фурье периодические колебания уровней динамического ряда представлены в виде суммы нескольких синусоид (гармоник), наложенных друг на друга.
Так, при k=1 ряд Фурье будет иметь вид
, (110)
а при k=2, соответственно,
(111)
и так далее.
Параметры уравнения теоретических уровней, определяемого рядом Фурье, находят, как и в других случаях, методом наименьших квадратов. Приведем без вывода формулы[36], используемые для исчисления параметров ряда Фурье:
; ; . (112)
Последовательные значения t обычно определяются от 0 с увеличением (приростом), равным , где n – число уровней эмпирического ряда.
Например, при n=10 временнЫе точки t можно записать следующим образом:
,
или (после сокращения): ; ; ; ; ; ; ; ; .
При n=12 значения t приведены в первой строке таблицы 34, а во второй и третьей строках определены значения sinkt и coskt для первой гармоники.
Таблица 34. Значения sinkt и coskt для первой гармоники 12-ти уровнего ряда динамики
t
|
| p/6
| p/3
| p/2
| 2p/3
| 5p/6
| p
| 7p/6
| 4p/3
| 3p/2
| 5p/3
| 11p/6
| cost
|
|
|
|
| –
| –
| –1
| –
| –
|
|
|
| sint
|
|
|
|
|
|
|
| –
| –
| –1
| –
| –
| В таблице 35 приведены исходные данные (графы 1 и 2) и расчет показателей, необходимых для получения уравнений первой гармоники (k=1) по формуле (112).
Таблица 35. Вспомогательные расчеты параметров ряда Фурье
Год
|
| Месяц (t)
| Итого
| январь
(0)
| февраль
(p/6)
| март
(p/3)
| апрель
(p/2)
| май
(2p/3)
| июнь
(5p/6)
| июль
(p)
| август
(7p/6)
| сентябрь
(4p/3)
| октябрь
(3p/2)
| ноябрь
(5p/3)
| декабрь
(11p/6)
|
| y
|
|
|
|
|
|
|
|
|
|
|
|
|
| ycost
|
| 30,31
| 22,5
|
| -29
| -55,4
| -69
| -45
| -21
| -0
| 16,5
| 26,85
| ysint
|
| 17,5
| 38,97
|
| 50,23
|
|
| -26
| -36,4
| -35
| -28,6
| -15,5
|
| 31,71
| 37,84
| 46,18
| 54,51
| 60,58
| 62,78
| 60,51
| 54,39
| 46,04
| 37,72
| 31,64
| 29,44
|
| y
|
|
|
|
|
|
|
|
|
|
|
|
|
| ycost
|
| 34,64
|
|
| -23
| -60,6
| -60
| -41,6
| -23
| -0
|
| 30,31
| ysint
|
|
| 38,11
|
| 39,84
|
|
| -24
| -39,8
| -38
| -31,2
| -17,5
|
| 31,71
| 37,84
| 46,18
| 54,51
| 60,58
| 62,78
| 60,51
| 54,39
| 46,04
| 37,72
| 31,64
| 29,44
|
| y
|
|
|
|
|
|
|
|
|
|
|
|
|
| ycost
|
| 33,77
|
|
| -31
| -63,2
| -65
| -48,5
| -19,5
| -0
| 15,5
| 24,25
| -259,234
| ysint
|
| 19,5
| 36,37
|
| 53,69
| 36,5
|
| -28
| -33,8
| -35
| -26,8
| -14
| 151,122
|
| 31,71
| 37,84
| 46,18
| 54,51
| 60,58
| 62,78
| 60,51
| 54,39
| 46,04
| 37,72
| 31,64
| 29,44
|
| Искомое уравнение первой гармоники имеет вид: = 46,111–14,402cost + 8,396sint, подстановкой в которое значений t в последней строке табл.35 получены теоретические значения объема производства мороженого по месяцам, а на рис.17 приведено графическое изображение, из которого видно, что различия эмпирических и теоретических уровней незначительны.
Рис. 17. Динамика производства мороженого предприятием, тонн
Аналогично рассчитываются параметры уравнения с применением второй, третьей и т.д. гармоник[37], а затем выбирается наиболее адекватное уравнение, то есть с минимальной ошибкой аппроксимации.
На основе подобранного уравнения по ряду Фурье можно прогнозировать (экстраполировать) развитие уровней ряда в будущем по формуле (104). Например, определим доверительные интервалы производства мороженого на январь 2007 года с вероятностью 0,95, для чего найдем ошибку аппроксимации по формуле (105): = = 4,727 и определим коэффициент доверия по нормальному распределению (так как число уровней n>30) по Приложению 1: t = 1,96. Тогда прогноз на январь 2007 года с вероятностью 0,95 по формуле (104): Yянв07 = 31,71 1,99*4,727 или 22,44<Y2007<40,974 (т).
Методические указания
По данным ФСГС сальдо внешней торговли (СВТ) России за период 2000-2006 гг. характеризуется рядом динамики, представленным в табл. 36.
Таблица 36. Сальдо внешней торговли (СВТ) России за период 2000-2006 гг.
Год
|
|
|
|
|
|
|
| Млрд. долл. США
| 60,1
| 48,1
| 46,3
| 59,9
| 85,8
| 118,3
| 140,7
| Проанализируем данный ряд динамики: выявим тенденцию и сделаем прогноз на 2007 и 2008 годы с вероятностью 0,95.
Для большей наглядности представим данные табл. 36 на графике – рис. 18.
Рис. 18. Сальдо внешней торговли (СВТ) России за период 2000-2006 гг.
Данные табл. 36 и рис. 18 наглядно иллюстрируют постепенное уменьшение и последующий рост СВТ России за период 2000-2006 гг.. Очевидно, что такую динамику не следует описывать линейной функцией тренда. Попробуем описать эту динамику с помощью тренда по параболе 2-го порядка по формуле (92). Параметры параболы (a0, a1, a2) определим методом МНК, для чего в формуле (99) вместо записываем выражение параболы . Тогда . Дальнейшее решение сводится к задаче на экстремум, т.е. к определению того, при каком значении a0, a1, a2 функция трех переменных S может достигнуть минимума. Как известно, для этого надо найти частные производные S по a0, a1, a2 и приравнять их к нулю и после элементарных преобразований решить систему трех уравнений с тремя неизвестными.
В соответствии с вышеизложенным найдем частные производные:
Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные – оставив в левой, получим систему нормальных уравнений:
(113)
Упростим систему (113), введя условную нумерацию t от середины ряда. Тогда ∑t = 0 и ∑t3 = 0, а система (113) упростится до следующего вида:
(114)
Решая систему (114) [38], находим параметры a0, a1, a2:
(115) (116) (117)
Определим по формулам (115) – (117) параметры уравнения параболы для нашего примера про СВТ России, для чего исходные данные и все расчеты необходимых сумм представим в табл. 37.
Таблица 37. Вспомогательные расчеты для параболического тренда
Год
| y
| t
| t2
| t4
| yt
| yt2
|
|
|
|
|
| 60,1
| -3
|
|
| -180,3
| 540,9
| 56,614
| 12,150
| 541,5727
| 391,4745
|
| 48,1
| -2
|
|
| -96,2
| 192,4
| 49,764
| 2,770
| 907,3177
| 1010,332
|
| 46,3
| -1
|
|
| -46,3
| 46,3
| 51,679
| 28,929
| 795,6187
|
|
| 59,9
|
|
|
| 0,0
| 0,0
| 62,357
| 6,038
| 307,2558
| 399,4288
|
| 85,8
|
|
|
| 85,8
| 85,8
| 81,800
| 16,000
| 3,66449
| 34,97878
|
| 118,3
|
|
|
| 236,6
| 473,2
| 110,007
| 68,771
| 907,2919
| 1475,657
|
| 140,7
|
|
|
| 422,1
| 1266,3
| 146,979
| 39,420
| 4501,509
| 3698,377
| Итого
| 559,2
|
|
|
| 421,7
| 2604,9
| 559,200
| 174,079
| 7964,23
| 8138,249
| Из табл. 37 получаем по формулам (115) – (117): a0 = 62,357, a1 = 15,061 и a2 = 4,382. Отсюда искомое уравнение тренда =62,357+15,061t+4,382t2. В 8-м столбце табл. 37 приведены теоретические (трендовые) уровни, рассчитанные по этому уравнению, а в итоге 9-го столбца – остатки по формуле (98). Для иллюстрации построим график эмпирических и трендовых уровней – рис. 19.
Рис. 19. Эмпирические и трендовые уровни СВТ России
Анализируя рис. 19, то есть сравнивая эмпирические и теоретические уровни, отмечаем, что они почти полностью совпадают, значит парабола 2-го порядка – вполне адекватная функция для отражения основной тенденции (тренда) СВТ России за 2000-2006 годы.
Равенство (103) соблюдается (необходимые суммы рассчитаны в трех последних столбцах табл. 37): 8138,249 = 174,079 + 7964,23. Теперь проверим тренд на адекватность по формуле (102): FР = 7964,23*4/(174,079*2) = 91,5 > FТ, значит модель адекватна и ее можно использовать для прогнозирования (FТ = 6,94 находим по Приложению 4 в 2-ом столбце [ = k – 1 = 3 – 1 = 2] и 4-й строке [ = n – k = 4]).
Спрогнозируем СВТ России на 2007 и 2008 годы с вероятностью 0,95, для чего найдем ошибку аппроксимации по формуле (105): = = 6,597 и найдем коэффициент доверия по распределению Стьюдента по Приложению 2: = 2,4469 при = 7 – 1= 6.
Прогноз СВТ России на 2007 и 2008 годы с вероятностью 0,95 по формуле (104):
Y2007 = (62,357+15,061*4+4,382*42) 2,4469*6,597 или 176,6<Y2007<208,9 (млрд. долл.);
Y2008 = (62,357+15,061*5+4,382*52) 2,4469*6,597 или 231,1<Y2007<263,4 (млрд. долл.).
Как видно из полученных прогнозов, доверительный интервал достаточно узок, значит получен достаточно точный прогноз СВТ России на 2006 и 2007 годы. Его надежная оценка имеет принципиальное значение для макроэкономического анализа и прогнозирования, поскольку его величина влияет на общую картину платежного баланса. Так, недооценка положительного сальдо означает недооценку отрицательного сальдо потоков капитала, и наоборот. В то же время потоки капитала увязаны с динамикой внутренних сбережений, что имеет принципиально важное значение для анализа инвестиционного потенциала и прогнозирования инвестиционной активности.
6.8. Контрольные задания
Проанализировать ряд динамики, приведенный в таблице 38 (по данным ФСГС), сделать прогноз на 2007 год.
Таблица 38. Варианты выполнения контрольного задания
|
|