Обратная связь
|
Классификация геометрических моделей Геометрические модели классифицируют на предметные, расчетные и познавательные. Среди геометрических моделей можно выделить плоские и объемные модели. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. К предметным моделям относятся чертежи, карты, фотографии, макеты, телевизионные изображения и т.п. Предметные модели тесно связаны с визуальным наблюдением. Среди предметных геометрических моделей можно выделить плоские и объемные модели. Предметные модели существенно различаются по способу исполнения: чертежи, рисунки, картины, фотографии, киноленты, рентгенограммы, макеты, модели, скульптуры и т.п. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают на подлинники, оригиналы и копии.
Графические построения могут служить для получения численных решений различных задач. Графически можно выполнять алгебраические действия (складывать, вычитать, умножать, делить), дифференцировать, интегрировать и решать уравнения. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм аналитические методы. Номография – переход от аналитической машины к геометрической машине.
К познавательным моделям относятся графики функций, диаграммы и графы. Графическая модель зависимости одних переменных величин от других называется графиком функций. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой. Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п.
Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео- и фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.
Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи.
В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их конструктивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство определенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональные параметры.
Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики.
Особенно интересным является использование геометрических моделей для проведения аналогий между геометрическими законами и реальными объектами для анализа сущности явления и оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма. Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.Проекционные геометрические модели, получаемые в результате операции проецирования, могут быть совершенными, несовершенными (различной степени несовершенства) и распавшимися. С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования.
|
|