Базовые представления об архитектуре ЭВМ Архитектурой компьютера считается его представление на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т. д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных устройств компьютера: процессора, основной памяти (ОП), внешних запоминающих устройств (ВЗУ) и периферийных устройств (ПУ). Совокупность процессора и основной памяти называют центральным устройством (ЦУ) компьютера.Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.
Структура компьютера — это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных устройств компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.
В настоящее время в зависимости от организации ЦУ различают два вида архитектур ЭВМ:
1 Архитектура фон Неймана.
2 Гарвардская архитектура.
Принципы (архитектура) фон Неймана
В основу построения большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.
1 Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
Выборка команд программы из памяти осуществляется с помощью счетчика команд. Этот узел процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. Так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.
Если после выполнения команды следует перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов (ветвления), которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд программы из памяти прекращается после достижения и выполнения команды «стоп».
Таким образом, процессор исполняет программу автоматически, без вмешательства человека.
2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей. Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.
3.Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться в процессе выполнения программ с использованием присвоенных имен.
Гарвардская архитектура.
Отличается от архитектуры фон Неймана разбивкой основной памяти на две части: памяти программ и памяти данных. Используется в микроконтроллерах.
Структурные схемы современных ЭВМ
Если абстрагироваться от подробностей, то современные ЭВМ можно разделить на два типа:
1 Большие (универсальные) ЭВМ.
2 Персональные компьютеры.
Структурная схема универсальной ЭВМ имеет вид:
Собственно обработка данных производится процессором, содержащим арифметико-логическое устройство (АЛУ) и устройство управления (УУ). В этих ЭВМ возникает проблема организации взаимодействия быстродействующего процессора с большим числом сравнительно медленно действующих периферийных устройств. Данная проблема решается при помощи специализированных процессоров ввода-вывода (каналов ввода-вывода), которые подразделяются на два вида:
1 Мультиплексные каналы.
2 Селекторные каналы.
Мультиплексный канал обслуживает несколько одновременно работающих с небольшой скоростью ПУ (печать, сканер и т.д.)
Селекторный канал связывает процессор и память с ПУ, работающими с высокой скоростью передачи данных (магнитные диски, магнитные барабаны и т.д.), разрешая одновременную работу только одному ПУ.
Структурная схема персонального компьютера имеет вид:
В этих компьютерах процессор (процессоры) и блоки памяти (ОП) взаимодействуют между собой и с внешними устройствами (ВнУ) через внутренний канал, называемой также системной магистралью, общий для всех устройств.
Физически магистраль представляет собой многопроводную линиюсгнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.
Периферийные устройстваподключаются к аппаратуре компьютера через специальные контроллеры, которые освобождают процессор от непосредственного управления функционированием данного оборудования.
Лекция 8
|