Обратная связь
|
Автокорреляция в остатках. Критерий Дарбина-Уотсона Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.
1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .
От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках.
Один из более распространенных методов определения автокорреляции в остатках – это расчет критерия Дарбина-Уотсона:
. (4.5)
Т.е. величина есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.
Можно показать, что при больших значениях существует следующее соотношение между критерием Дарбина-Уотсона и коэффициентом автокорреляции остатков первого порядка :
. (4.6)
Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то и, следовательно, . Если автокорреляция остатков отсутствует, то и . Т.е. .
Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам (см. приложение E) определяются критические значения критерия Дарбина-Уотсона и для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:
– есть положительная автокорреляция остатков, отклоняется, с вероятностью принимается ;
– зона неопределенности;
– нет оснований отклонять , т.е. автокорреляция остатков отсутствует;
– зона неопределенности;
– есть отрицательная автокорреляция остатков, отклоняется, с вероятностью принимается .
Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .
Пример. Проверим гипотезу о наличии автокорреляции в остатках для аддитивной модели нашего временного ряда. Исходные данные и промежуточные расчеты заносим в таблицу:
Таблица 4.11
|
|
|
|
|
|
|
|
|
|
|
|
|
| -5,252
| –
| –
| 27,584
|
|
| -35,843
| -5,252
| 935,8093
| 1284,7
|
|
| -74,183
| -35,843
| 1469,956
| 5503,1
|
|
| 48,937
| -74,183
| 15158,53
| 2394,8
|
|
| -26,946
| 48,937
| 5758,23
| 726,09
|
|
| 60,464
| -26,946
| 7640,508
| 3655,9
|
|
| 45,124
| 60,464
| 235,3156
| 2036,2
|
|
| 50,244
| 45,124
| 26,2144
| 2524,5
|
|
| 2,361
| 50,244
| 2292,782
| 5,574
|
|
| -59,229
| 2,361
| 3793,328
| 3508,1
|
|
| 41,431
| -59,229
| 10132,44
| 1716,5
|
|
| -68,450
| 41,431
| 12073,83
| 4685,4
|
|
| 69,668
| -68,45
| 19076,58
| 4853,6
|
|
| 36,078
| 69,668
| 1128,288
| 1301,6
|
|
| -34,263
| 36,078
| 4947,856
|
|
|
| -50,143
| -34,263
| 252,1744
| 2514,3
| Сумма
| -0,002
| 50,141
| 84921,85
| 37911,97
| Фактическое значение критерия Дарбина-Уотсона для данной модели составляет:
.
Сформулируем гипотезы: – в остатках нет автокорреляции; – в остатках есть положительная автокорреляция; – в остатках есть отрицательная автокорреляция. Зададим уровень значимости . По таблице значений критерия Дарбина-Уотсона определим для числа наблюдений и числа независимых параметров модели (мы рассматриваем только зависимость от времени ) критические значения и . Фактическое значение -критерия Дарбина-Уотсона попадает в интервал (1,37<2,24<2,63). Следовательно, нет основания отклонять гипотезу об отсутствии автокорреляции в остатках.
Существует несколько ограничений на применение критерия Дарбина-Уотсона.
1. Он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака.
2. Методика расчета и использования критерия Дарбина-Уотсона направлена только на выявление автокорреляции остатков первого порядка.
3. Критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.
Приложение A[6]
Случайные переменные
|
|