Пиши Дома Нужные Работы

Обратная связь

Генетика – наука, которая изучает закономерности наследственности и изменчивости.

Наследственность –свойство всех живых организмов передавать особенности своего строения и развития потомкам.

Изменчивость – свойство всех живых организмов изменять наследственную информацию, полученную от родителей, а также процесс ее реализации в ходе индивидуального развития (онтогенеза). Изменчивость – это свойство, противоположное наследственности.

Эти два понятия тесно связаны друг с другом.

 

Термин «генетика» впервые был предложен в 1906 году английским ученым У. Бэтсоном, однако история развития этой науки своими корнями уходит в далекое прошлое.

Всю историю развития генетики можно условно разделить на четыре этапа:

1. Существование умозрительных гипотез о природе наследственности.

2. Открытие основных законов наследственности.

3. Изучение наследственности на клеточном уровне.

4. Изучение наследственности на молекулярном уровне.

 

 

Структурно-функциональные уровни организации наследственного материала

В наследственной структуре клетки и организма в целом выделяют три уровня организации генетического материала: генный, хромосомный и геномный.

Генный уровень

Наименьшей (элементарной) единицей наследственного материала является ген.

Ген – это часть молекулы ДНК, имеющая определенную последовательность нуклеотидов и представляющая собой единицу функционирования наследственного материала.

Ген несет информацию о конкретном признаке или свойстве организма.

У человека имеется около 30 тысяч генов.

Изменение в структуре гена ведет к изменению соответствующего признака. Следовательно, на генном уровне обеспечиваются индивидуальное наследование и индивидуальная изменчивость признаков.



 

Хромосомный уровень

Все гены в клетке объединены в группы и располагаются в хромосомах в линейном порядке. Каждая хромосома уникальна по набору входящих в нее генов. В состав хромосом входят ДНК, белки (гистоновые и негистоновые), РНК, полисахариды, липиды и ионы металлов.

Хромосомный уровень в эукариотических клетках обеспечивает характер функционирования отдельных генов, тип их наследования и регуляцию их активности. Он позволяет закономерно воспроизводить и передавать наследственную информацию в процессе деления клетки.

Геномный уровень

Геном – совокупность всех генов, находящихся в гаплоидном наборе хромосом. При оплодотворении два генома родительских гамет сливаются и образуют генотип.

Генотип –совокупность всех генов, заключенных в диплоидном наборе хромосом, или кариотипе. Кариотип – полный набор хромосом, характеризующийся у каждого вида их строго определенным числом и строением.

Геномный уровень отличается высокой стабильностью. Он обеспечивает сложную систему взаимодействия генов. Результатом взаимодействия генов друг с другом и с факторами внешней среды является фенотип.

 

Молекулярные основы наследственности

Ген как элементарная единица наследственной информации выполняет определенные функции и обладает определенными свойствами.

Функции генов:

· хранение наследственной информации;

· управление биосинтезом белка и других веществ в клетке;

· контроль за развитием и старением клетки.

 

Свойства генов:

· дискретность: один ген контролирует один признак;

· специфичность: каждый ген отвечает строго за свой признак;

· стабильность структуры: гены передаются из поколения в поколение не изменяясь;

· дозированность действия: один ген определяет одну дозу фенотипического проявления признака;

· способность к мутированию (изменению структуры);

· способность к репликации (самоудвоению);

· способность к рекомбинации (переходу из одной гомологичной хромосомы в другую).

 

Функциональная классификация генов

 

Все гены делятся на три группы:

· cтруктурные – контролируют развитие признаков путем синтеза соответствующих ферментов;

· регуляторные – управляют деятельностью структурных генов;

· модуляторные – смещают процесс проявления признаков в сторону его усиления или ослабления, вплоть до полной блокировки.

 

Особенности строения генов

У прокариотических и эукариотических клеток

Клетки в природе делятся на прокариотические и эукариотические. У прокариот ген имеет непрерывную структуру, т.е. представляет собой часть молекулы ДНК.

У эукариот ген состоит из чередующихся участков: экзонови интронов. Экзон – информативный участок, интрон – неинформативный. Число интронов у разных генов неодинаково (от 1 до 50).

 

Экспрессия (проявление действия) гена в процессе синтеза белка

 

Весь процесс синтеза белка условно делится на три этапа: транскрипция,

Процессинг и трансляция.

Транскрипция

Транскрипция –процесс переписывания информации с молекулы ДНК на и-РНК. Протекает в ядре.

Молекула ДНК состоит из двух спирально закрученных нитей. Каждая нить представлена последовательностью нуклеотидов, а каждый нуклеотид состоит из углевода (пентозы), азотистого основания и остатка фосфорной кислоты.

Каждая нить молекулы ДНК имеет два конца – гидроксильный (3¢) и фосфатный (5¢). Нити расположены по отношению друг к другу антипараллельно.

Синтез и-РНК в клетке всегда идет от фосфатного конца к гидроксильному. Поэтому матрицей для транскрипции служит одна нить ДНК, обращенная к синтезирующему ферменту своим гидроксильным концом; она называется кодогенной, или информативной (а другая нить, соответственно, некодогенной, или неинформативной).

 

Транскрипция делится на три периода:

· инициация,

· элонгация,

· терминация.

Инициация –

начало синтеза и-РНК.

Синтез и-РНК осуществляется при помощи фермента – РНК-полимеразы. У прокариот имеется только один вид этого фермента, у эукариот – пять видов. Сущность инициации состоит в том, что фермент РНК-полимераза отыскивает в молекуле ДНК стартовую область – промотор и прикрепляется к ней. Это происходит в течение 15-20 секунд.


Элонгация –

синтез молекулы и-РНК из свободных нуклеотидов по принципу комплементарности: аденину соответствует урацил, а цитозину – гуанин. За 1 секунду выстраивается около 50 нуклеотидов. Синтез и-РНК одновременно протекает в нескольких участках молекулы ДНК. Образующиеся фрагменты называются транскриптоны. В последующем они объединяются.

Терминация –

завершение синтеза и-РНК.

Происходит тогда, когда РНК-полимераза встречается с особым участком молекулы ДНК – терминатором.

У прокариот в роли терминатора выступают участки молекулы ДНК, имеющие «симметричное» строение – они одинаково читаются в обе стороны от центра. Такие участки называются палиндромами. Фрагмент и-РНК, синтезированный на таком участке, в последующем складывается вдвое в виде шпильки. Образование "шпильки" является сигналом для завершения синтеза и-РНК. У эукариот "шпильки" не образуются. Вероятно, терминация у них протекает иначе.

 

Процессинг

Процессинг включает целый ряд преобразований и-РНК, необходимых для ее нормального функционирования:

1. Образование колпачка (КЭПа) на фосфатном конце.

Колпачок – это трифосфонуклеозид, содержащий гуанин. С помощью колпачка и-РНК отыскивает в цитоплазме малую субъединицу рибосомы.

2. Метилирование азотистых оснований.

3. Удаление части нуклеотидов на гидроксильном конце.

4. Присоединение на гидроксильном конце poli-А (100-200 остатков адениловой кислоты). Это образование выполняет стабилизирующую функцию и обеспечивает транспорт и-РНК из ядра в цитоплазму.

5. Сплайсинг – процесс удаления интронов и сшивания экзонов.

Ядерная и-РНК является точной матрицей молекулы ДНК. Она содержит как экзоны, так и интроны, поэтому называется незрелой, или юной. После прохождения сплайсинга она становится зрелой.

Сплайсинг присущ только эукариотам. Возможен также альтернативный сплайсинг: из одной и той же ядерной (незрелой) и-РНК вырезаются разные участки, в результате чего образуются разные зрелые и-РНК.

Зрелая и-РНК имеет следующий вид:

 

КЭП – 1 – АУГ – 2 – 3 – 4 – poli-A

Здесь КЭП – "колпачок", 1 – лидирующий участок, АУГ – стартовый кодон, 2 – экзоны (их может быть много), 3 – кодон-терминатор, 4 – трейлер, poli-А – 100-200 остатков адениловой кислоты.

Лидирующий участок взаимодействует в последующем с рибосомальной РНК, а трейлер определяет местоположение и-РНК в цитоплазме и продолжительность ее функционирования.

Такая и-РНК выходит из ядра в цитоплазму, где осуществляется следующий этап – трансляция.

 

Трансляция

 

Трансляция –это процесс считывания информации с молекулы и-РНК на молекулу белка. Подобно транскрипции, трансляция протекает в три стадии:

· инициация,

· элонгация,

· терминация.

Инициация

И-РНК своим кэпированным (фосфатным) концом отыскивает малую субъединицу рибосомы. Лидирующая последовательность соединяется с рибосомальной РНК. При этом стартовый кодон АУГ попадает в недостроенный пептидильный (П) участок рибосомы. (Как известно, в рибосоме имеется два активных участка: П – пептидильный и А – аминоацильный.) Далее к стартовому кодону присоединяется т-РНК, несущая аминокислоту метионин. Только после этого субъединицы рибосомы объединяются, и на этом инициация заканчивается.

Элонгация

Заключается в синтезе полипептида из свободных аминокислот, которые доставляются транспортными РНК. Аминокислота обязательно сначала должна попасть в аминоацильный центр – «центр узнавания». Скорость присоединения аминокислот у прокариот и эукариот разная: за одну секунду присоединяется две аминокислоты у эукариот и 16-17 – у прокариот.

Терминация

Терминация наступает тогда, когда в аминоацильный центр поступает один из трех кодонов-терминаторов – УАА, УАГ, УГА. Таким триплетам не соответствует ни одна аминокислота, поэтому они называются еще нонсенс-кодонами. К последней аминокислоте присоединяется вода, и карбоксильный конец полипептидной цепочки отсоединяется от рибосомы.

На этом синтез белка завершается.

Поскольку у про- и эукариот принципиальной разницы в механизме биосинтеза белка нет, то можно предположить, что данный механизм сформировался очень давно, еще до разделения клеток на два типа.

Следует также иметь в виду, что в синтезе белка принимает участие множество факторов инициации, элонгации, терминациикак белковой, так и небелковой природы.

 

Регуляция экспрессии генов

 

Регуляция генной активности в клетках может происходить на всех этапах экспрессии – от репликации ДНК до посттрансляционных процессов. Рассмотрим регуляцию на уровне транскрипции.

Впервые принцип регуляции на уровне транскрипции был установлен французскими учеными Ф. Жакобом и Ж. Моно в 1961 году. Свои исследования они проводили на кишечной палочке. Кишечная палочка при попадании в среду, содержащую молочный сахар лактозу, вырабатывает фермент лактазу.Если же лактозы нет, то фермент не вырабатывается. Каким же образом клетка управляет процессом синтеза лактазы? Ответ на этот вопрос дает предложенная Жакобом и Моно модель оперона. Оперономназывается функциональная система, состоящая из структурных и регуляторных генов.

В приведенной ниже схеме lac-оперона Р – ген-регулятор; П – промотор; О – ген-оператор; Z, Y, A – структурные гены, причем ген Z отвечает за выработку фермента лактазы, ген Y кодирует фермент, осуществляющий активный транспорт лактозы в клетку, а ген А хотя и находится здесь, однако никакого отношения к расщеплению лактозы не имеет.

Ген-регулятор кодирует синтез белка-репрессора. Репрессор в химическом отношении очень активен и поэтому в свободном состоянии не существует, он обязательно должен вступить с чем-нибудь в связь. Если в окружающей среде нет лактозы, то репрессор вступает в связь с оператором, блокируя его. В этом случае РНК-полимераза не может прикрепиться к промотору (т.к. мешает репрессор). Без фермента РНК-полимеразы не происходит синтез и-РНК на структурных генах и, следовательно, на рибосомах не идет синтез фермента лактазы.

Если же в окружающей среде появляется лактоза, то репрессор связывается с ней и освобождает ген-оператор. При отсутствии репрессора в области гена-оператора фермент РНК-полимераза взаимодействует с промотором и осуществляет синтез и-РНК на структурных генах. Далее и-РНК поступает на рибосомы, где осуществляется синтез фермента лактазы. Последняя будет расщеплять молочный сахар лактозу. Такое состояние в клетке будет длиться до тех пор, пока не исчезнет лактоза. После этого репрессор снова связывается с оператором и тем самым останавливает процесс синтеза фермента лактазы.

Данный принцип регуляции называется принципом индукции. Индуктором в данном случае является молочный сахар – лактоза, т.к. ее появление ведет к запуску синтеза фермента.

Возможен и другой принцип регуляции синтеза белка – принцип репрессии. Он также имеет место у кишечной палочки. В этом случае появление продуктов реакции не запускает, а тормозит процесс синтеза фермента.

Исходно белок-репрессор находится в неактивной форме, поэтому он ни с чем не вступает в связь. Оператор свободен, и РНК-полимераза производит синтез и-РНК на структурных генах. Далее и-РНК поступает на рибосомы, где синтезируются соответствующие ферменты. Ферменты расщепляют субстрат до определенных продуктов, которые в свою очередь активируют репрессор (взаимодействуя с ним). Активированный репрессор вступает в связь с оператором, блокируя его. Нахождение репрессора в области оператора ведет к остановке процесса транскрипции на структурных генах и, соответственно, к прекращению синтеза ферментов на рибосомах. Необходимо отметить, что активация репрессора происходит только тогда, когда продуктов реакции накопится определенное количество (достаточно большое!).

По такому принципу в кишечной палочке функционируют два оперона:

· his-оперон, содержащий 9 структурных генов и регулирующий синтез аминокислоты гистидин;

· trip-оперон, содержащий 5 структурных генов и регулирующий синтез аминокислоты триптофан.

У эукариот принцип оперонной регуляции не обнаружен. Активность каждого гена у них регулируется несколькими генами-регуляторами, кодирующими, соответственно, несколько регуляторных белков. Эти белки связываются с определенными участками в молекуле ДНК. Один из таких участков находится перед промотором и называется препромоторным элементом; другие области лежат вдали от промотора и носят названия энхансеров(усилителей) и глушителей. В результате связывания регуляторных белков с этими участками происходит включение и выключение структурных генов.

Система выработки регуляторных белков – «многоэтажная». Главные регуляторные белки отвечают за выработку второстепенных. Важная роль в регуляторных процессах принадлежит также гормонам (часто они являются индукторами транскрипции) и белкам гистоновой природы.

 

Разновидности генов

 

Наряду с приведенной ранее функциональной классификацией генов существуют и другие их разновидности: псевдогены, онкогены и мобильные гены.

Псевдогены (ложные гены) – нуклеотидные последовательности в молекуле ДНК, сходные по строению с известными генами, но утратившие функциональную активность.

Онкогены – нуклеотидные последовательности в молекуле ДНК, присутствующие в хромосомах нормальных клеток, способные активизироваться под влиянием факторов внешней среды и продуцировать белки, вызывающие рост опухолей.

Мобильные (прыгающие) гены – гены, не имеющие постоянной локализации не только в хромосоме, но и в пределах хромосомного набора клетки. Понятно, что перемещения генов влияют на их экспрессию – ранее не активные гены могут активизироваться, и наоборот. Некоторые ученые считают, что эти гены играют важную роль в эволюции. Видимо, возникновение таким путем отдельных видов (в результате переноса информации от вида к виду) действительно возможно.

 

В последние десятилетия в генетике появилось еще одно новое понятие – «семейство генов», или «мультигенное семейство». Это группа генов, имеющих сходное строение, общее происхождение и выполняющих сходные функции. Число генов в разных семействах может колебаться от нескольких единиц до нескольких тысяч.

У человека имеются семейства генов, кодирующие

· α- и b- глобиновые белки гемоглобина;

· иммуноглобулины;

· актины и миозины;

· белки, определяющие тканевую несовместимость;

· гистоновые белки.

 

Организация генов мультигенных семейств может быть разной. Так, семейства актиновых и миозиновых генов разбросаны по всему геному. Семейства генов, кодирующих a- и b- глобиновые белки, сосредоточены в одной хромосоме и образуютгенные кластеры (так называют семейства генов, расположенных в одной хромосоме).

Генные кластеры возникли в результате дупликации (удвоения) отдельных генов. Таким образом, возникновение генных кластеров есть отражение эволюционного процесса.

 

Генотип и фенотип.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.