Свойства опрераций над матрицами Вычисление определителей II и III порядка
Определителем называется число, записанное в виде квадратной таблицы:
Определитель II порядка вычисляется по формуле:
Определитель III порядка можно вычислить по правилу Сарруса:
Основные свойства определителей:
1.1. Значение определителя не изменится, если:
1) строки заменить на столбцы, такое действие называется транспонирование, т.е. действия, выполняемые со строками, справедливы и для столбцов;
все элементы одной строки умножить на какое-либо число и прибавить к соответствующим элементам другой строки.
Такие действия с элементами определителя называются элементарными преобразованиями.
2)Определитель меняет знак на противоположный, если две каких-либо строки поменять местами.
3)Определитель равен нулю, если:
- все элементы какой-либо строки равны нулю;
- соответствующие элементы каких-либо двух строк равны;
- соответствующие элементы каких-либо двух строк пропорциональны.
Минор и алгебраическое дополнение
Минором к элементу определителя -го порядка называетсяопределитель -го порядка, полученный из исходного вычеркиванием -той строки и -того столбца. Задание. Найти минор к элементу определителя .
Решение. Вычеркиваем в заданном определителе вторую строку и третий столбец:
тогда
Ответ.
Алгебраическое дополнение
Алгебраическим дополнением к элементу определителя -го порядка называется число
Пример
Задание. Найти алгебраическое дополнение к элементу определителя
Решение.
Ответ.
4)Правило Крамера
Пусть матричное уравнение AX = B описывает систему n линейных уравнений с n неизвестными.Если , то система (1) является совместной и имеет единственное решение, описываемое формулой
где ; – определитель, полученный из определителя D заменой i-го столбца столбцом свободных членов матрицы B:
5) Действия над матрицамии их свойства.
1. Сложение матриц - поэлементная операция
2. Вычитание матриц - поэлементная операция
3. Произведение матрицы на число - поэлементная операция
4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)
Amk*Bkn=Cmn причем каждый элемент сijматрицы Cmn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.
Покажем операцию умножения матриц на примере
5. Возведение в степень
m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц
6. Транспонирование матрицы А. Транспонированную матрицу обозначают AT или A'
Строки и столбцы поменялись местами
Пример
Свойства опрераций над матрицами
A+B=B+A
(A+B)+C=A+(B+C)
λ(A+B)=λA+λB
A(B+C)=AB+AC
(A+B)C=AC+BC
λ(AB)=(λA)B=A(λB)
A(BC)=(AB)C
(A')'=A
(λA)'=λ(A)'
(A+B)'=A'+B'
(AB)'=B'A'
6)Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы.
Пусть исходная система выглядит следующим образом
Матрица называется основной матрицей системы, — столбцом свободных членов.
Тогда, согласно свойству элементарных преобразований над строками, основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):
При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных [4].
Тогда переменные называются главными переменными. Все остальные называются свободными.
Если хотя бы одно число , где , то рассматриваемая система несовместна, т.е. у неё нет ни одного решения.
Пусть для любых .
Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом ( , где — номер строки):
, где
Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.
7) Рассмотрим проблему определения операции, обратной умножению матриц.
Пусть A— квадратная матрица порядка n
Матрица A−1, удовлетворяющая вместе с заданной матрицей A равенствам: A−1⋅A=A⋅A−1=E,A−1⋅A=A⋅A−1=E,
называется обратной. Матрицу A называют обратимой, если для нее существует обратная, в противном случае — необратимой.
Обратная матрица может существоватьтолько для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.
|