Закономерности действия экологических факторов
Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакцияхживых существ можно выявить ряд общих закономерностей.
Закон толерантности (закон оптимума или закон В. Шелфорда) –каждый фактор имеет определенные пределы положительного влияния на организмы. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей (много «хорошо» – тоже «не хорошо»).
Факторы среды имеют количественное выражение. По отношению к каждому фактору можно выделитьзону оптимума (зону нормальной жизнедеятельности),зону пессимума (зону угнетения) ипределы выносливости организма. Оптимум – такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов максимальна. В зоне пессимума жизнедеятельность организмов угнетена. За пределами выносливости существование организма невозможно. Различают нижний и верхний предел выносливости.
Способность живых организмов переносить количественные колебания действия экологического фактора в той или иной степени называетсяэкологической валентностью (толерантностью, устойчивостью, пластичностью).
Значения экологического фактора между верхним и нижним пределами выносливости называетсязоной толерантности. Виды с широкой зоной толерантности называютсяэврибионтными, с узкой –стенобионтными. Организмы, переносящие значительные колебания температуры, называютсяэвритермными, а приспособленные к узкому интервалу температур – стенотермными. Таким же образом по отношению к давлению различают эври- и стенобатные организмы, по отношению к степени засоления среды – эври- и стеногалинные, по отношению к питанию эври- и стенотрофы (применительно к животным используют термины эври- и стенофаги) и т.д.
Экологические валентности отдельных индивидуумов не совпадают. Поэтому экологическая валентность вида шире экологической валентности каждой отдельной особи.
Экологические валентности вида к разным экологическим факторам могут существенно отличаться. Набор экологических валентностей по отношению к разным факторам среды составляетэкологический спектр вида.
Экологический фактор, количественное значение которого выходит за пределы выносливости вида, называетсялимитирующим (ограничивающим) фактором.
2. Неоднозначность действия фактора на разные функции –каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания.
3. Разнообразие индивидуальных реакций на факторы сред –степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов одного вида не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °С, для взрослых форм -22 °С, а для яиц -27 °С. Мороз в -10 °С губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.
4. Относительная независимость приспособления организмов к разным факторам – степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот.
5. Несовпадение экологических спектров отдельных видов – каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношениях к каким либо-либо отдельным факторам.
6. Взаимодействие факторов – оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду.
7. Закон минимума (закон Ю. Либиха или правило ограничивающих факторов) –возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Так, продвижение вида на север может лимитироваться (ограничивается) недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Выявление ограничивающих факторов очень важно в практике сельского хозяйства.
8. Гипотеза незаменимости фундаментальных факторов (В. Р. Вильямсон) – полное отсутствие в среде полное отсутствие в среде фундаментальных экологических факторов (физиологически необходимых; например, света, воды, углекислого газа, питательных веществ) не может быть компенсировано (заменено) другими факторами. Так, по данным «Книги рекордов Гиннеса» без воздуха человек может прожить до 10 мин., без воды – 10–15 суток, без пищи – до 100 дней.
В природе экологические факторы действуют совместно, то есть комплексно. Комплекс факторов, под действием которых осуществляются все основные жизненные процессы организмов, включая нормальное развитие и размножение, называютсяусловиями жизни. Условия, в которых размножения не происходит, называютсяусловиями существования.
Число всевозможных экологических факторов потенциально является неограниченным. Несмотря на многообразное влияние экологических факторов на организмы можно выявить общий характер (закономерности) их воздействия.
Схему действия экологического фактора можно изобразить графически (рис. 2, рис. 3).
Диапазон действия или зона толерантности(выносливости) экологического фактора ограничен крайними пороговыми значениями (точки минимума и максимума), при которых возможно существование организма. Чем шире диапазон колебаний экологического фактора, в пределах которого данный вид может существовать, тем шире диапазон его выносливости (толерантности).
В соответствии с пределами выносливости организмов выделяют зону нормальнойжизнедеятельности (витуальную), зоныугнетения (сублетальные), за которыми следует нижний и верхний пределы жизнедеятельности. За этими пределами находится летальная зона, где происходит гибель организма. Точка на оси абсцисс, которая соответствует наилучшему показателю жизнедеятельности организма (оптимальная величина фактора) - это точка оптимума.
Условия среды, в которых, какой-либо фактор (или их совокупность) выходят за пределы зоны комфорта и оказывают угнетающее действие, называется экстремальными.
минимум оптимум максимум
Рис. 2. Зависимость действия экологического фактора от его количества
Рис. 3. Экологическая валентность (пластичность) видов
По степени воздействия на организмы факторы неравнозначны. Поэтому при их анализе всегда выделяются наиболее существенные. Факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным содержанием) называются ограничивающими (лимитирующими). По каждому фактору имеется диапазон выносливости, за пределами которого организм не способен существовать. Следовательно, любой фактор может выступать как лимитирующий, если он отсутствует, находится ниже критического уровня или превосходит максимально высокий уровень.
Для существования и выносливости организма решающее значение принадлежит фактору, который для организма имеется в минимальном количестве. Эта идея легла в основузакона минимума, сформулированного немецким химиком Ю. Либихом: «Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей».
Например: На острове Диксон, где нет шмелей, не растут и бобовые растения. Недостаток тепла препятствует распространению некоторых видов плодовых растений на север (персик, грецкий орех).
Из практики известно, что лимитирующим фактором может быть не только недостаток, но и избыток таких, например факторов, как тепло, свет, вода. Следовательно, организмы характеризуются экологическим минимумом и экологическим максимумом. Впервые эту мысль высказал американский ученый В. Шелфорд, которая легла в основу закона толерантности: «Лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору». Исходя из этого закона, можно сформулировать ряд положений, а именно:
- организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого;
- организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены;
- если условия по одному экологическому фактору не оптимальны для вида, то может сузиться и диапазон толерантности к другим экологическим факторам;
- период размножения оказывается обычно критическим, в этот период многие факторы среды часто становятся лимитирующими
Каждый фактор имеет определенные пределы положительного влияния на организмы. Как недостаточное, так и избыточное действие фактора, отрицательно сказывается на жизнедеятельности особей. Чем сильнее отклонение от оптимума в ту или иную сторону, тем больше выражено угнетающее воздействие фактора на организм. Эта закономерность называется правило оптимума: «У каждого вида организмов свои оптимальные значения действия факторов среды и свои пределы выносливости, между которыми располагается его экологический оптимум».
Например: Песец в тундре может переносить колебания температуры воздуха около 80°С (от +30 до -50°С), тепловодные рачки не выдерживают даже незначительное колебание температуры. Их температура лежит в диапазоне 23-29°С, что составляет около 6°С.
Факторы окружающей среды действуют не каждый в отдельности, а взаимно. Взаимодействие различных факторов заключается в том, что изменение интенсивности одного из них может сузить предел выносливости к другому фактору или, наоборот, увеличить его.
Например: Оптимальная температура повышает выносливость к недостатку влаги и пищи; жара переносится легче, если воздух не влажный, а сухой; сильный мороз без ветра человеком или животными переносится легче, в ветреную же погоду при сильном морозе очень велика вероятность обморожения и т.д. Но, несмотря на взаимное влияние факторов, все-таки они не могут заменить друг друга, что нашло отражение в законе независимости факторов В.Р. Вильямса: «Условия жизни равнозначны, ни один из факторов жизни не может быть заменен другим». Например, нельзя действие влажности (воды) заменить действием углекислого газа или солнечного света.
4.2
Для обозначения совокупности экологических условий используются понятия ʼʼокружающая средаʼʼ и ʼʼсреда обитанияʼʼ(подразумевается среда жизни человека).
Окружающая природная среда - ϶ᴛᴏ природные компоненты, существующие на Земле и вокруг нее (материальные природные тела – вода, воздух, животные, растения, почва, микроорганизмы, минералы, горные породы, космос) и соответствующие природные процессы (космические, геологические, климатические, биологические).
Окружающая человека среда(по Н.Ф. Реймерсу,1994) состоит из четырех взаимосвязанных компонентов - подсистем˸
а) природной среды;
б) порожденной агротехнической среды- ʼʼвторой природыʼʼ;
в) искусственной среды- ʼʼтретьей природыʼʼ;
Г) социальной среды.
Природная среда, окружающая человека -факторы чисто естественного или природно- антропогенного системного происхождения, прямо или косвенно, осознанно или неосознанно воздействующие на отдельного человека или коллективы, включая и все человечество.
К этим факторам относятся˸
- энергетическое состояние среды (тепловое и волновое, включая магнитное и гравитационное поля);
- химический и динамический характер атмосферы; водный компонент (влажность воздуха, зеленой поверхности, химический состав вод, их физика, само их наличие и соотношение с населенной сушей);
- физический, химический и механический характер поверхности земли (включая геоморфологические структуры - равнинность, холмистость и т.д.);
- облик и состав биологической части экосистем (растительности, животного и микробного населения) и их ландшафтных сочетаний (в том числе сочетаний непахотных сельскохозяйственных и лесохозяйственных земель с естественными экосистемами);
- степень сбалансированности и стационарности компонентов (создающих климатические и пейзажные условия и обеспечивающих определенный ритм природных явлений, в т.ч. стихийно- разрушительного и др. Размещено на реф.рф характера, рассматриваемого как бедствие (землетрясения, наводнения, ураганы и т.д.);
- плотность населения и взаимовлияние самих людей как биологический фактор.
Среда ʼʼвторой природыʼʼ, или квазиприродная среда - все модификации природной среды, искусственно преобразованные людьми и характеризующиеся свойством отсутствия системного самоподдержания, ᴛ.ᴇ. постепенно разрушающиеся без постоянного регулирующего воздействия со стороны человека˸ пахотные земли, культурные ландшафты; грунтовые дороги; зеленые насаждения.
ʼʼТретья природаʼʼ или артеприродная среда- весь искусственный мир, созданный человеком (она окружает человека).
Социальная среда- культурно- психологический климат, создаваемый для личности, социальных групп и человечества в целом самими людьми.
Социальная среда интегрируется с природной, квазиприродной и артеприродной средами в общую совокупность окружающей человека среды.
Все факторы каждой из сред определяют качество среды жизни.
(от греч. techne — искусство, мастерство и sphaira — шар, сфера), 1) часть биосферы, преобразованнаялюдьми с помощью прямого и косвенного воздействия технических средств (научно-технической революции)в целях наилучшего соответствия социально-экономическим потребностям человечества; 2) некоторыеавторы ошибочно считают техносферу синонимом ноосферы; 3) практически замкнутая регионально-глобальная будущая технологическая система утилизации и реутилизации вовлекаемых в хозяйственныйоборот природных ресурсов, рассчитанная на изоляцию хозяйственно-производственных циклов отприродного обмена веществ и потока энергии; 4) термин используется при обсуждении глобальных проблемв научной (в основном философской) и популярной литературе.
Социоприродная среда – сложное и многоаспектное понятие. А.Ф. Лебедев, В.С. Преображенский, Е.Л. Райх, обратив внимание на множественность и иерархичность понятия «человек» в системе «человек – среда», одними из первых выявили различия систем этого понятия, выделенных по биологическому и социально-экономическому признакам, акцентируя внимание на том, что каждому уровню рассмотрения (индивид, популяция, общество и т. д.) соответствует своя среда и свои способы адаптации к ней.
5.5
Экологическая безопасность – состояние защищенности жизненно важных экологических интересов человека, прежде всего его прав на чистую, здоровую, благоприятную для жизни окружающую природную среду, возникающее при достижении сбалансированного сосуществования окружающей природной среды и хозяйственной деятельности человека, когда уровень нагрузки на природную среду не превышает ее способности к самовосстановлению.
Объектами экологической безопасности являются геосоциоэкосистемы различного уровня: глобального, национального, регионального, местного, уровня отдельного предприятия или человека, подвергаемые экологическим угрозам, под которыми понимают «прогнозируемые последствия или потенциальные сценарии развития событий катастрофического характера, которые обусловлены изменениями состояния окружающей среды и способны нанести вред жизненно важным интересам личности, общества, государства, мирового сообщества».
Объекты экологической безопасности –человек, его объединения, общество и государство, окружающая среда и ее составляющие – отдельные природные объекты, экосистемы, особо охраняемые территории.
Субъекты:
1) государство, – осуществляющее функции в этой области через органы законодательной, исполнительной и судебной властей. Оно обеспечивает безопасность каждого гражданина на территории Российской Федерации, а за пределами ее территории оно гарантирует своим гражданам защиту и покровительство;
2) граждане, общественные организации и объединения обладают правами и обязанностями по обеспечению безопасности в соответствии с законодательством Российской Федерации и законодательством ее субъектов, принятым в пределах их компетенции.
Государство обеспечивает правовую и социальную защиту гражданам, общественным и иным организациям и объединениям, оказывающим содействие в обеспечении безопасности в соответствии с законом.
Экологическая безопасность — это относительно новая сфера деятельности государственных органов исполнительной власти. Она связана с обеспечением экологического благополучия страны и реализацией экологических прав граждан России.
Эффективность в значительной мере определяется ее информационным обеспечением, которое в начале XXI в. приобретает особый вес и может влиять на политику, экономику, правоприменение, на проведение единой государственной экономической и экологической политики.
В принципе, экологическая безопасность — это любая деятельность человека, исключающая вредное воздействие на окружающую среду. Более широкое определение понятия можно найти в словаре Реймерса. Экологическая безопасность — это совокупность действий, состояний и процессов, прямо или косвенно не приводящих к жизненно важным ущербам (или угрозам таких ущербов), наносимым природной среде, отдельным людям и человечеству; комплекс состояний, явлений и действий, обеспечивающий экологический баланс на Земле и в любых регионах на уровне, к которому физически, социально-экономически, технологически и политически готово (может без серьезного ущерба адаптироваться) человечество.
Экологическая безопасность по зарубежным оценкам может быть определена в трех измерениях:
1) устойчивое развитие и использование ресурсов;
2) охрана окружающей среды в традиционном узком смысле слова — поддержание чистоты воздуха, воды, почвы и т.д.;
3) минимизация риска в случае технологических катастроф. В отечественной литературе наиболее полное определение экологической безопасности как элемента общественного достояния дали экономисты Н. П. Федоренко и К. Г. Гофман, связывая ее со степенью адекватности экологических условий задачам сохранения здоровья населения и обеспечения длительного устойчивого социально-экономического развития.
Экологическая безопасность — категория, которая развивается во времени и пространстве. Дальнейшее развитие этого понятия предполагает его уточнение и детализацию.
Объекты экологической безопасности — социоэкосистемы "социум — окружающая среда" различного уровня (масштаба).
Экологическая безопасность может быть рассмотрена в нескольких масштабах:
• глобальном;
• региональном;
• местном (локальном);
• условно точечном (уровень хозяйствующего субъекта);
• индивидуальном.
На рис. 4.2 приведена схема интерпретации понятия экологической безопасности.
Рис. 4.2. Составляющие понятия "экологическая безопасность
В рамках понятия "национальная безопасность" экологическую безопасность следует рассматривать как способность государства контролировать, снижать и устранять экологические опасности разного масштаба, выявленные и оцененные научными методами, для обеспечения благосостояния общества и здоровья людей, политической, экономической и социальной стабильности. Экологическая безопасность входит в один ряд с экономической, продовольственной, общественной, личной, политической безопасностью, что получило признание на международном уровне в документах ООН (рис. 4.3).
Основанием для выделения уровней системы экологической безопасности может служить административное деление внутри государства и межгосударственное деление. При этом уровень глобальной экологической безопасности оказывается критически важным, так как без него невозможно обеспечить все остальные уровни (рис. 4.4).
Необходимо подчеркнуть, что экологическая безопасность — это постоянно действующий фактор, связанный с загрязнением окружающей среды, который при критическом воздействии может привести к принципиальному изменению
Рис. 4.3. Экологическая составляющая в структуре национальной безопасности
Рис. 4.4. Уровни системы экологической безопасности
системы — заболеваниям, разрушению экосистемы (правило "одного процента"). Экологическая безопасность, в сущности, характеризует экосистемы различного иерархического ранга — от биогеоценоза (arpo-, урбоценоза) до биосферы в целом. Безопасность определяется временем и пространством. Кратковременное воздействие может быть относительно безопасным, а длительное — опасным; изменение в локальном масштабе — почти незначительным, а широкомасштабное — критическим.
В настоящее время в качестве критериев экологической безопасности используются предельно допустимые концентрации (ПДК) и предельно допустимые выбросы и сбросы (ПДВ и ПДС). Критерии экологической безопасности по отношению к окружающей среде частично определены только для некоторых природных сред, а критерии по допустимым пределам использования природной среды для народнохозяйственных нужд не определены. В качестве метода регулирования, в частности, используется плата за природные ресурсы.
Концепция экологической безопасности, основанная на понятии загрязнения природной среды, показателях предельно допустимых выбросов и сбросов, постепенно уступает место новой для России и широко распространенной во многих западных странах системной парадигме управления эколого-экономическим ущербом.
6.5
Вода - ценнейший природный ресурс. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Общеизвестна необходимость ее для бытовых потребностей человека, всех растений и животных. Для многих живых существ она служит средой обитания.
Рост городов, бурное развитие промышленности, интенсификация сельского хозяйства, значительное расширение площадей орошаемых земель, улучшение культурно-бытовых условий и ряд других факторов все больше усложняет проблемы обеспечения водой.
Потребности в воде огромны и ежегодно возрастают. Ежегодный расход воды на земном шаре по всем видам водоснабжения составляет 3300-3500 км3. При этом 70% всего водопотребления используется в сельском хозяйстве.
Много воды потребляют химическая и целлюлозно-бумажная промышленность, черная и цветная металлургия. Развитие энергетики также приводит к резкому увеличению потребности в воде. Значительное кол-во воды расходуется для потребностей отрасли животноводства, а также на бытовые потребности населения. Большая часть воды после ее использования для хозяйственно-бытовых нужд возвращается в реки в виде сточных вод.
Дефицит пресной воды уже сейчас становится мировой проблемой. Все более возрастающие потребности промышленности и сельского хозяйства в воде заставляют все страны, ученых мира искать разнообразные средства для решения этой проблемы.
На современном этапе определяются такие направления рационального использования водных ресурсов: более полное использование и расширенное воспроизводство ресурсов пресных вод; разработка новых технологических процессов, позволяющих предотвратить загрязнение водоемов и свести к минимуму потребление свежей воды.
Методы очистки сточных вод
В реках и других водоемах происходит естественный процесс самоочищения воды. Однако он протекает медленно. Пока промышленно- бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их. Очистка сточных вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения- сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода)
Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические, когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.
Сущность механического метода состоит в том, что из сточных вод путем отстаивания и фильтрации удаляются механические примеси. Грубодисперсные частицы в зависимости от размеров улавливаются решетками, ситами, песколовками, септиками, навозоуловителями различных конструкций, а поверхностные загрязнения - нефтеловушками, бензомаслоуловителями, отстойниками и др. Механическая очистка позволяет выделять из бытовых сточных вод до 60-75% нерастворимых примесей, а из промышленных до 95%, многие из которых как ценные примеси, используются в производстве.
Химический метод заключается в том, что в сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химической очисткой достигается уменьшение нерастворимых примесей до 95% и растворимых до 25% При физико-химическом методе обработки из сточных вод удаляются тонко дисперсные и растворенные неорганические примеси и разрушаются органические и плохо окисляемые вещества, чаще всего из физико-химических методов применяется коагуляция, окисление, сорбция, экстракция и т.д. Широкое применение находит также электролиз. Он заключается в разрушении органических веществ в сточных водах и извлечении металлов, кислот и других неорганических веществ. Электролитическая очистка осуществляется в особых сооружениях - электролизерах. Очистка сточных вод с помощью электролиза эффективна на свинцовых и медных предприятиях, в лакокрасочной и некоторых других областях промышленности.
Загрязненные сточные воды очищают также с помощью ультразвука, озона, ионообменных смол и высокого давления, хорошо зарекомендовала себя очистка путем хлорирования. Среди методов очистки сточных вод большую роль должен сыграть биологический метод, основанный на использовании закономерностей биохимического и физиологического самоочищения рек и других водоемов. Есть несколько типов биологических устройств по очистке сточных вод: биофильтры, биологические пруды и аэротенки.
В биофильтрах сточные воды пропускаются через слой крупнозернистого материала, покрытого тонкой бактериальной пленкой. Благодаря этой пленке интенсивно протекают процессы биологического окисления. Именно она служит действующим началом в биофильтрах.
В биологических прудах в очистке сточных вод принимают участие все организмы, населяющие водоем.
Аэротенки - огромные резервуары из железобетона. Здесь очищающее начало - активный ил из бактерий и микроскопических животных. Все эти живые существа бурно развиваются в аэротенках, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего в сооружение потоком подаваемого воздуха. Бактерии склеиваются в хлопья и выделяют ферменты, минерализующие органические загрязнения. Ил с хлопьями быстро оседает, отделяясь от очищенной воды. Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, неслипающиеся в хлопья, омолаживают бактериальную массу ила.
Сточные воды перед биологической очисткой подвергают механической, а после нее для удаления болезнетворных бактерий и химической очистке, хлорированию жидким хлором или хлорной известью. Для дезинфекции используют также другие физико-химические приемы (ультразвук, электролиз, озонирование и др.)
Биологический метод дает большие результаты при очистке коммунально-бытовых стоков. Он применяется также и при очистке отходов предприятий нефтеперерабатывающей, целлюлозно-бумажной промышленности, производстве искусственного волокна.
На стадии предварительного уплотнения активного ила наибольшее распространение получили отстаивание и флотация. Преимущества флотационного сгущения суспензии активного ила: простота аппаратурного оформления способа; незначительная продолжительность процесса; удовлетворительные показатели сгущения суспензии активного ила (ступень сгущения 3,0-5,0);
не требуется предварительная раегентная обработка. Достаточно широкое распространение получила напорная флотация для уплотнения избыточного активного ила. Сущность ее заключается в насыщении воды воздухом со значительным пересыщением им, что обеспечивается созданием избыточного давления в течение некоторого времени. При снижении давления до атмосферного начинают выделяться мельчайшие пузырьки воздуха, которые и флотируют содержащиеся в воде частицы примесей.
При использовании такого метода для обезвоживания избыточного активного ила микробную биомассу можно сгустить в 305 раз. Такую степень сгущения следует считать хорошей при достаточно простом аппаратурном оформлении процесса напорной флотации. Однако потери микробной биомассы с осветленной иловой водой при сгущении активного ила напорной флотацией в некоторых случаях сравнительно большие.
Для уменьшения потерь микробной биомассы и повышения степени сгущения в исходную суспензию активного ила перед флотацией иногда добавляют реагенты, например растворы электролитов или полиэлектролитов. Интенсификация процесса флотации достигается также введением ПАВ в сгущаемую суспензию активного ила. Исследования показали, что одним из эффективных методов предварительного уплотнения активного ила является также электрофлотация. Степень сгущения активного ила электрофлотацией составляет 3-5 при исходной концентрации 0,6-1,0% абсолютно сухих веществ, а энергозатраты составляют около 1-2 кВт. ч на 1 м3 исходной суспензии. Наибольшее влияние на процесс электрофлотации оказывает плотность тока.
Для повышения степени извлечения биомассы активного ила следует вводить в исходную суспензию минеральные коагулянты или синтетические флокулянты. Высокоэффективным методом сгущения осадков сточных вод и избыточного активного ила является центрефугирование. Преимущества способа - простота, экономичность и низкая влажность сгущенного продукта; недостаток - большой унос твердой фазы с осветленной жидкостью (фугатом), что приводит к необходимости дополнительной стадии очистки фугата, например сепарированием.
Для обезвоживания осадков сточных вод и избыточного активного ила наиболее эффективны непрерывнодействующие, осадительные горизонтальные центрифуги со шнековой выгрузкой осадка. Преимущество этих центрифуг - высокая производительность при низком удельном расходе энергии и массе. Недостатки - невысокая степень сгущения осадка, а также быстрый износ шнека и ротора.
Всесторонние исследования безреагентного центрифугирования осадков сточных вод и избыточного ила, показали возможность практического использования этого способа. Исследован новый способ обработки избыточного активного ила, включающий центрифугирование суспензии активного ила, отбираемой из вторичных отстойников
Для повышения эффективности центрифугирования применяют различные химические реагенты, в частности синтетические флокулянты. Обработка флокулянтами катионного типа позволяет повысить эффективность задержания сухого вещества до 95-99 %.
Использование центрифуг для механического обезвоживания осадков первичных отстойников представляет собой один из перспективных способов, особенно при применении флокулянтов. Высокая степень сгущения твердой фазы может быть достигнута на тарельчатых сепараторах.
Известно, что эффективность сгущения суспензии активного ила с использованием сепараторов существенно зависит от предварительной термореагентной обработки. Эффективность режима термореагентной подготовки суспензии активного ила к сгущению проверена в промышленных условиях.
Технологическая схема обезвоживания активного ила с предварительной термореагентной обработкой, уплотнением напорной флотацией и с последующим сгущением в центрифугах и сепараторах представляется перспективной и практичной.
Для кондиционирования активного ила и осадков первичных отстойников и интенсификаций процесса сгущения можно использовать наряду с тепловой и реагентной обработкой и другие способы, например с добавлением золы, в частности полученной от сжигания осадков сточных вод. Практический и научный интерес представляет флокуляционно-центробежный способ сгущения суспензий.
Достаточно прочные хлопья образуются в биосуспензиях, в том числе и в суспензии активного ила, при проведении комплексной обработки. Один из наиболее эффективных способов такой обработки - аэробная стабилизация суспензии активного ила с термореагентной обработкой. Следует отметить, что термореагентная обработка не только усиливает образование агрегатов частиц квазитвердой фазы биосуспензии, но и приводит к обезвреживанию получаемого в дальнейшем готового продукта, что весьма важно при использовании биомассы микроорганизмов в качестве кормовой добавки. Иногда высокий эффект флокуляции достигается только при аэробной стабилизации и термообработки суспензии.
После уплотнения (сгущения) дальнейшее обезвоживание суспензии активного ила достигается выпариванием и сушкой или одной сушкой. Для сушки избыточного активного ила и осадков сточных вод можно рекомендовать распылительные сушилки, непрерывные сушилки струйного типа и сушилки с инертным псевдоожиженным носителем. Поскольку концентрированная иловая суспензия имеет высокую вязкость, перед сушкой ее целесообразно предварительно подогреть. Если же биомасса в дальнейшем будет использоваться в качестве кормовой добавки, то необходима тепловая обработка.
7.1
|