Основные правила правильного сидения за компьютером 1. Оптимально использовать стул с регулирующейся высотой. Решительно избегайте сидения на низком стуле.
2. Угол между спиной и ногами должен составлять примерно 90 градусов, а угол в коленях должен быть больше, чем 90 градусов.
3. Главная точка опоры о спинку стула должна быть на уровне поясничного отдела позвоночника
4. На стуле сидите выпрямив спину, отодвинув ноги немного от себя. Голову держите прямо, не поднимая подбородок.
Система счисления
Система счисления — это способ записи чисел с помощью заданного набора специальных знаков (цифр).
Существуют позиционные и непозиционные системы счисления.
В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позициив записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.
В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.
Сама же запись числа 757,7 означает сокращенную запись выражения
700 + 50 + 7 + 0,7 = 7•102 + 5•101 + 7•100 + 7•10-1 = 757,7.
Любая позиционная система счисления характеризуется своим основанием.
Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе.
За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения
an-1 qn-1 + an-2 qn-2+ ... + a1 q1 + a0 q0 + a-1 q-1 + ... + a-m q-m,
где ai – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.
Например:
В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.
Продвижением цифры называют замену её следующей по величине.
Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.
Целые числа в любой системе счисления порождаются с помощью Правила счета [44]:
Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.
Применяя это правило, запишем первые десять целых чисел
· в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;
· в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;
· в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;
· восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.
Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно:
· двоичная (используются цифры 0, 1);
· восьмеричная (используются цифры 0, 1, ..., 7);
· шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел — от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).
Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:
10 - я
| 2 - я
| 8 - я
| 16 - я
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | 10 - я
| 2 - я
| 8 - я
| 16 - я
|
|
|
| A
|
|
|
| B
|
|
|
| C
|
|
|
| D
|
|
|
| E
|
|
|
| F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.
Таблица соответствия чисел между разными системами счисления
|
| Числа, не зависимо от системы счисления, всегда означают количество чего-нибудь. Собственно, записать число (в любой системе счисления) - это всего лишь способ записать это количество. Поэтому, можно составить таблицу соответствия между числами в разных системах счисления:
Для практического применения имеет смысл запомнить первые 16 строк этой таблицы (для чисел от 0 до 15). Но если разобраться в том, как эта таблица устроена, можно не запоминать, а научиться легко вычислять соответствие в уме.
Десятичная
| Двоичная
| Восьмеричная
| Шестнадцатеричная
| Римская
|
|
|
|
| отсутствует
|
|
|
|
| I
|
|
|
|
| II
|
|
|
|
| III
|
|
|
|
| IV
|
|
|
|
| V
|
|
|
|
| VI
|
|
|
|
| VII
|
|
|
|
| VIII
|
|
|
|
| IX
|
|
|
| A
| X
|
|
|
| B
| XI
|
|
|
| C
| XII
|
|
|
| D
| XIII
|
|
|
| E
| XIV
|
|
|
| F
| XV
|
|
|
|
| XVI
|
|
|
|
| XVII
|
|
|
|
| XVIII
|
|
|
|
| XIX
|
|
|
|
| XX
| И так далее
|
Таблица 1. Наиболее важные системы счисления.
Двоичная (Основание 2)
| Восьмеричная (Основание 8)
| Десятичная (Основание 10)
| Шестнадцатеричная (Основание 16)
| | триады
| | тетрады
| 0 1
| 0 1 2 3 4 5 6 7
| 000 001 010 011 100 101 110 111
| 0 1 2 3 4 5 6 7 8 9
| 0 1 2 3 4 5 6 7 8 9 A B C D E F
| 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
|
В двоичной системе очень просто выполняются арифметические и логические операции над числами.
Таблица сложения:
|
|
|
|
|
| +
|
| =
|
|
| +
|
| =
|
|
| +
|
| =
|
|
| +
|
| =
|
|
Таблица умножения:
|
|
|
|
|
| *
|
| =
|
|
| *
|
| =
|
|
| *
|
| =
|
|
| *
|
| =
|
|
Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи.
Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.
Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 – соответственно, третья и четвертая степени числа 2).
Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).
Например:
Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.
Например,
Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?
При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последо-вательность остатков от деления, записанных в обратном порядке, начиная с последнего.
Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:
Ответ: 7510 = 1 001 0112 = 1138 = 4B16.
Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?
Пpи переводе правильной десятичной дpоби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть пpоизведения. Число в новой системе счисления записывается как последовательность полученных целых частей пpоизведения.
Умножение пpоизводится до тех поp, пока дpобная часть пpоизведения не станет pавной нулю. Это значит, что сделан точный пеpевод. В пpотивном случае пеpевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку.
Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:
Ответ: 0,3510 = 0,010112 = 0,2638 = 0,5916 .
Как пеpевести число из двоичной (восьмеpичной, шестнадцатеpичной) системы в десятичную?
При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.
Примеpы:
Сводная таблица переводов целых чисел из одной системы счисления в другую
Рассмотрим только те системы счисления, которые применяются в компьютерах — десятичную, двоичную, восьмеричную и шестнадцатеричную.
Для определенности возьмем произвольное десятичное число, например 46, и для него выполним все возможные последовательные переводы из одной системы счисления в другую.
Порядок переводов определим в соответствии с рисунком:
На этом рисунке использованы следующие обозначения:
· в кружках записаны основания систем счисления;
· стрелки указывают направление перевода;
· номер рядом со стрелкой означает порядковый номер соответствующего примера в сводной таблице 4.1.
Например: означает перевод из двоичной системы в шестнадцатеричную, имеющий в таблице порядковый номер 6.
Как производятся арифметические операции в позиционных системах счисления?
Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.
Сложение
Таблицы сложения легко составить, используя Правило Счета.
|