Дальнейшее развитие технологии Ethernet В настоящее время самой распространенной сетевой технологией является именно Ethernet. По данным IDC, в 1997 году более 80 % всех сетей были построены на базе Ethernet. Все популярные операционные системы и стеки протоколов (TCP/IP, IPX, DECNet и т. д.) поддерживают Ethernet. Причинами такого господства Ethernet в сетевом мире являются высокая надежность, доступность инструментов управления, масштабируемость, гибкость, низкая стоимость и легкость внедрения.
Технология Ethernet достаточно бурно эволюционировала с момента своего зарождения. В табл. 1.4 показана шкала эволюционного развития, представленная в формате nBASE-X (n — номинальная скорость передачи информации в Мбит/с, а Х — среда передачи). В табл. 1.4 также приведена максимально допустимая длина кабеля.
Таблица 1.4. Технологии и соответствующие скорости передачи
Тип
| Скорость передачи
| Длина
| 10BASE-5
| 10 Мбит/с, толстый коаксиал
| 500м
| 10BASE-2
| 10 Мбит/с, тонкий коаксиал
| 185м
| 10BASE-T
| 10 Мбит/с, неэкранированная витая пара
| 100м
| 10BASE-FL
| 10 Мбит/с, оптоволоконный кабель
| 2км
| 100BASE-TX
| 100 Мбит/с, неэкранированная витая пара (2 пары)
| 100м
| 100BASE-T4
| 100 Мбит/с, неэкранированная витая пара (4 пары)
| 100м
| 100BASE-FX
| 100 Мбит/с, оптоволоконный кабель
| 412 м/2 км
| 1000BASE-SX*
| 1000 Мбит/с (1 Гбит/с), многомодовый оптоволоконный кабель (62.5/125 мкм)
| 260м
| 1000BASE-SX
| 1000 Мбит/с (1 Гбит/с), многомодовый оптоволоконный кабель (50/125 мкм)
| 500м
| 1000BASE-LX
| 1000 Мбит/с (1 Гбит/с), многомодовый оптоволоконный кабель (62.5/125 мкм)
| 400м
| 1000BASE-LX
| 1000 Мбит/с (1 Гбит/с), многомодовый оптоволоконный кабель (50/125 мкм)
| 550м
| 1000BASE-LX
| 1000 Мбит/с (1 Гбит/с), одномодовый оптоволоконный кабель (9/126 мкм)
| 5000м
| 1000BASE-CX
| 1000 Мбит/с, экранированный сбалансированный медный кабель
| 25м
|
* Протяженность кабеля для скоростей 1 Гбит/с приведена из текущего стандарта IEEE 802.3z, находящегося в стадии утверждения.
Изначально технология Ethernet была ограничена тем, что множество пользователей конкурировали за одну полосу пропускания в 10 Мбит/с. Однако со временем были найдены интересные решения, частично снимающие эту проблему. В их основе лежит использование коммутаторов, которые в отличие от традиционных мостов имеют большое количество портов и обеспечивают передачу кадров между несколькими портами одновременно. Это позволяет эффективно применять коммутаторы и для таких сетей, в которых трафик между сегментами практически не отличался от трафика, циркулирующего в самих сегментах. Технология Ethernet после появления коммутаторов перестала казаться совершенно бесперспективной, так как появилась возможность соединить низкую стоимость устройств Ethernet с высокой производительностью сетей, построенных на основе коммутаторов. Используя технологию коммутируемого Ethernet, каждое устройство получает выделенный канал между собой и портом коммутатора. Технология коммутации прижилась в сетях очень быстро. Обеспечивая передачу данных со скоростью канала связи между различными сегментами локальной сети (иными словами, между портами коммутатора), коммутация позволяет создавать крупные сети с эффективной системой управления. Кроме того, эта технология стала толчком к созданию концепции виртуальных локальных вычислительных сетей (ВЛВС).
Однако необходимость организации магистрали сети, к которой подключаются отдельные коммутаторы, не отпала. Если множество сегментов сети работают на скорости 10 Мбит/с, то магистраль должна иметь скорость значительно большую. В начале 90-х годов начала ощущаться недостаточная пропускная способность Ethernet. Для компьютеров на процессорах Intel 80286 или 80386 с шинами ISA (8 Мбайт/с) или EISA (32 Мбайт/с) пропускная способность сегмента Ethernet составляла 1/8 или 1/32 часть канала «память-диск» и хорошо согласовывалась с соотношением между объемом локальных и внешних данных, циркулирующих в компьютере. Теперь же у мощных клиентских станций с процессорами Pentium или Pentium Pro и шиной PCI (133 Мбайт/с) эта доля упала до 1/133, что явно недостаточно. Поэтому многие сегменты Ethernet на 10 Мбит/с стали перегруженными, время реакции серверов и частота возникновения коллизий в таких сегментах значительно возросли, еще более снижая реальную пропускную способность. В ответ на эти требования была разработана технология Fast Ethernet, являющаяся 100-мегабитной версией Ethernet.
Следует отметить, что увеличение скорости в 10 раз приводит к уменьшению максимального расстояния между узлами. Сначала было предложено простое решение задачи построения магистрали — несколько коммутаторов Ethernet связывались вместе по витой паре или волоконно-оптическому кабелю — так называемая коллапсированная магистраль. Но возникла проблема, когда потребовалось связать коммутаторы, находящиеся на больших расстояниях. Она была решена с помощью организации выделенного, свободного от коллизий оптоволоконного канала связи. В этом случае коммутаторы могли связываться напрямую на расстояния до 2 км. Как видно, технология Fast Ethernet обеспечила достаточно всеобъемлющее решение для построения сетей масштаба одного или нескольких зданий. Одобрение стандарта на технологию Fast Ethernet в 1995 году стало важным событием для сообщества производителей сетевого оборудования, так как появилась гибкая, быстрая и масштабируемая технология передачи данных.
До разработки технологий коммутации и Fast Ethernet среди специалистов по сетевым технологиям господствовало мнение, что технологии ATM и FDDI будут оптимальным решением для организации магистрали сети. Однако в настоящее время технология Fast Ethernet часто конкурирует с упомянутыми технологиями в этой области. Кроме того, активно разрабатывается и внедряется технология Gigabit Ethernet.
Fast Ethernet
Идея технологии Fast Ethernet родилась в 1992 году. В августе следующего года группа производителей объединилась в организацию, названную Альянсом Fast Ethernet (Fast Ethernet Alliance — FEA). Цель этого альянса заключалась в скорейшем одобрении стандарта Fast Ethernet комитетом IEEE. В июне 1995 года все процедуры стандартизации были успешно завершены, и технология Fast Ethernet была стандартизирована в документе 802.3и.
При рассмотрении стандарта много времени уделялось сохранению метода доступа CSMA/CD. Все предложенные решения опирались на этот метод, что вполне естественно, так как он позволяет сохранить преемственность с сетями l0Base-T и l00Base-T. CSMA/CD определяет способ передачи данных по сети от одного узла к другому через кабельную систему. В модели OSI протокол CSMA/CD является частью уровня управления доступом к среде (Media Access Control, MAC). На этом уровне определяется формат, в котором информация передается по сети, и способ получения доступа сетевого устройства к сети для передачи данных. Компании HP и AT&T предложили совершенно отличный от CSMA/CD метод доступа, который был назван Demand Priority. Однако он был поддержан гораздо меньшим числом сетевых производителей. Для его стандартизации был организован новый комитет IEEE 802.12.
Стандарт Fast Ethernet определяет три модификации для работы с разными видами кабелей: 100BaseTX, 100BaseT4 и 100BaseFX. Модификации 100BaseTX и 100BaseT4 рассчитаны на витую пару, а 100BaseFX был разработан для оптического кабеля.
Стандарт 100BaseTX требует применения двух пар неэкранированных или экранированных витых пар. Одна пара служит для передачи, другая — для приема. Этим требованиям отвечают два основных кабельных стандарта: на неэкранированную витую пару категории 5 и экранированную витую пару типа 1 от IBM.
Стандарт 100BaseT4 имеет менее ограничительные требования к кабелю, так как в нем задействуются все четыре пары восьмижильного кабеля: одна пара для передачи, другая для приема, а оставшиеся две пары работают как на передачу, так и на прием. В результате в стандарте 100BaseT4 и прием, и передача данных могут осуществляться по трем парам. Для реализации сетей 100BaseT4 подойдут кабели с неэкранированной витой парой категорий 3-5 и экранированный типа 1.
Технология Fast Ethernet включает в себя также стандарт для работы с многомодовым оптоволоконным кабелем. Этот стандарт (100BaseFX) ориентирован, в основном, на применение в магистрали сети или для организации связи удаленных объектов.
Преемственность технологий Fast Ethernet и Ethernet позволяет легко выработать рекомендации по применению: Fast Ethernet целесообразно применять в тех организациях, которые широко использовали классический Ethernet, но сегодня испытывают потребность в увеличении пропускной способности. При этом сохраняется весь накопленный опыт работы с Ethernet и, частично, сетевая инфраструктура.
Хотя Fast Ethernet и является развитием стандарта Ethernet, переход к 100BaseT требует некоторого изменения в топологии сети. Теоретический предел диаметра сегмента сети Fast Ethernet составляет 250 м. Это ограничение определено самой природой метода доступа CSMA/CD и скоростью передачи в 100 Мбит/с.
Для классического Ethernet время прослушивания сети определяется максимальным расстоянием, которое 512-битный кадр может пройти по сети за время, равное времени обработки этого кадра на рабочей станции. Для сети Ethernet это расстояние равно 2500 м. В сети Fast Ethernet этот же самый 512-битный кадр за время, необходимое на его обработку на рабочей станции, пройдет всего 250 м. Если принимающая станция будет удалена от передающей на расстояние свыше 250 м, то кадр может вступить в конфликт с другим кадром на линии, а передающая станция, завершив передачу, уже опоздала бы с реакцией на этот конфликт. Поэтому максимальный диаметр сети 100BaseT составляет 250 м.
Для увеличения допустимой дистанции необходимо использовать два повторителя для соединения всех узлов. В соответствии со стандартом Fast Ethernet расстояние между концентратором и рабочей станцией не должно превышать 100 м. Для установки Fast Ethernet потребуются сетевые адаптеры для рабочих станций и серверов, концентраторы 100BaseT и, возможно, некоторое количество коммутаторов 100BaseT. К моменту появления стандарта Fast Ethernet в построении локальных сетей масштаба здания сложился следующий подход — магистраль крупной сети строилась на технологии FDDI (высокоскоростной и отказоустойчивой, но весьма дорогой), а сети рабочих групп и отделов использовали Ethernet или Token Ring.
Основная область использования Fast Ethernet сегодня — это сети рабочих групп и отделов. Целесообразно совершать переход к Fast Ethernet постепенно, оставляя Ethernet там, где он хорошо справляется с поставленными задачами. Одним из очевидных случаев, когда Ethernet не следует заменять технологией Fast Ethernet, является подключение к сети старых персональных компьютеров с шиной ISA.
Технология 100VG-AnyLan
В июле 1993 года был организован новый комитет IEEE 802.12, призванный стандартизовать новую технологию l00Base VG. Данная технология представляла собой высокоскоростное расширение стандарта IEEE 802.3 (100BaseT или Ethernet на витой паре). В сентябре 1993 года было предложено объединить в новом стандарте поддержку сетей Ethernet и Token Ring. Новая технология получила название l00VG-AnyLan. Технология призвана поддерживать как уже существующие сетевые приложения, так и вновь создаваемые. Стандарт l00VG-AnyLan ориентирован как на витую пару, так и на оптоволоконные кабели, допускающие значительную удаленность абонентов. Ввиду того что технология l00VG-AnyLan была призвана заменить собой технологии Ethernet и Token Ring, она поддерживает топологии, характерные для этих сетей.
Для l00Base-T Ethernet используются кабели, содержащие четыре неэкранированные витые пары. Одна пара служит для передачи данных, другая — для разрешения конфликтов; две оставшиеся пары не используются. При работе с экранированными кабелями, что характерно для сетей Token Ring, используются две витые пары, но при вдвое большей частоте. При передаче по такому кабелю каждая пара используется в качестве фиксированного однонаправленного канала. По одной паре передаются входные данные, по другой — выходные. Стандартное удаление узлов, на котором гарантируются заявленные параметры передачи, — 100 м для пар категории 4 и 200 м для категории 5. Сети, построенные на неэкранированной витой паре, используют все четыре пары кабеля и могут функционировать как в полнодуплексном (для передачи сигналов управления), так и в полудуплексном режиме, когда все четыре пары используются для передачи данных в одном направлении. В сетях на экранированной паре или оптоволокне реализованы два однонаправленных канала: один на прием, другой на передачу. Прием и передача данных могут осуществляться одновременно.
Основным устройством при построении сети l00VG-AnyLan является специальный концентратор. Все устройства сети, независимо от их назначения, присоединяются к этим концентраторам. Выделяют два типа соединений: для связи «вверх» и для связи «вниз». Под связью «вверх» подразумевается соединение с концентратором более высокого уровня. Связь «вниз» — это соединение с конечными узлами и концентраторами более низкого уровня (по одному порту на каждое устройство или концентратор).
Стандарт на технологию 100VG-AnyLan определяет канальный и физический уровни передачи данных. Канальный уровень разбит на два подуровня: логического контроля соединения (LLC — Logical Link Control) и контроля доступа к среде (MAC — Medium Access Control). На канальный уровень возлагается ответственность за обеспечение надежной передачи данных между двумя узлами сети. Получая пакет для передачи с более высокого сетевого уровня, канальный уровень присоединяет к этому пакету адреса получателя и отправителя, формирует из него набор кадров для передачи и обеспечивает выявление и исправление ошибок. Канальный уровень поддерживает форматы кадров Ethernet и Token Ring. Верхний подуровень канального уровня — логический контроль соединения — обеспечивает режимы передачи данных как с установлением, так и без установления соединения. Нижний подуровень канального уровня — контроль доступа к среде — при передаче окончательно формирует кадр передачи в соответствии с тем протоколом, который реализован в данном сегменте (IEEE 802.3 или 802.5). При получении пакета этот подуровень проверяет адрес, контрольную сумму и наличие ошибок при передаче.
Выполняемые на этом подуровне задачи различаются для концентратора и конечного узла. На узле решаются следующие задачи:
q Присоединение специальных атрибутов к данным перед передачей их на физический уровень в соответствии со средой передачи;
q Проверка полученных кадров на наличие ошибок при передаче;
q Контроль доступа к физическому уровню при передаче данных;
q Обработка полученных с физического уровня кадров и отделение специальных атрибутов для данной передающей среды.
На концентраторе происходит:
q Получение запросов на передачу от конечных узлов;
q Интерпретация адреса отправителя;
q Пересылка пакетов на соответствующие порты для отправки.
Логически МАС-подуровень можно разделить на три основных компонента: протокол приоритета запросов, систему тестирования соединений и систему подготовки кадров передачи.
Протокол приоритетов запросов — Demand Priority Protocol (DPP) — определяется стандартом 100VG-AnyLan как составная часть МАС-подуровня. DPP определяет порядок обработки запросов и установления соединений. Когда конечный узел готов передать пакет, он отправляет концентратору запрос обычного или высокого приоритета. Если на узле нет данных для передачи, он отправляет сигнал «свободен». Концентраторы 100VG могут соединяться каскадом, что обеспечивает максимальное расстояние между узлами в одном сегменте на неэкранированном кабеле до 2.5 км. При таком соединении концентраторов, когда узел обращается к концентратору нижнего уровня, последний транслирует запрос «наверх». Концентратор циклически опрашивает порты, выясняя их готовность к передаче. Если к передаче готовы сразу несколько узлов, концентратор анализирует их запросы, опираясь на два показателя — приоритет запроса и физический номер порта, к которому присоединен передающий узел. После того как обработаны все высокоприоритетные запросы, обрабатываются запросы с нормальным приоритетом в порядке, также определяемом физическим адресом порта. При опросе порта, к которому подключен концентратор нижнего уровня, инициируется опрос его портов, и только после этого возобновляется опрос портов старшего концентратора. Таким образом, все конечные узлы опрашиваются последовательно, независимо от уровня концентратора, с которым они соединены. Прежде чем передать данные на физический уровень, необходимо дополнить его служебными заголовком и окончанием, включающими в себя поля данных (если это необходимо), адреса абонентов и контрольные последовательности.
Стандарт IEEE 802.12 поддерживает три типа форматов кадров передачи данных: IEEE 802.3 (Ethernet), IEEE 802.5 (Token Ring) и специальный формат кадров тестирования соединений IEEE 802.3. Стандарт запрещает использование различных форматов кадров в рамках одного сегмента сети. Каждый сегмент может поддерживать только один логический стандарт. Порядок передачи данных для форматов Ethernet и Token Ring одинаков (первым передается байт старшего разряда, последним — младшего). Различается лишь порядок битов в байтах: в формате Ethernet первыми передаются младшие биты, а в Token Ring — старшие.
Кадр Ethernet (IEEE 802.3) должен содержать следующие поля: DA — адрес получателя пакета (6 байт); SA — адрес отправителя (6 байт); L — указатель длины данных (2 байта); данные пользователя и заполнители; FCS — контрольная последовательность. Длина поля данных не может быть менее 46 байт. Если данные не заполняют это пространство, к ним дописывается специальный заполнитель. Блок данных не может быть длиннее 1500 байт. Поле адреса кроме 45 бит адреса несет в себе два бита управления. Первый бит определяет тип адреса — групповой или индивидуальный, а второй бит задает его глобальность или локальность. Если это адрес отправителя, первый бит всегда указывает на индивидуальный адрес (равен 0).
Кадр Token Ring (IEEE 802.5) содержит большее число полей. К ним относятся: АС — поле контроля доступа (1 байт, не используется); FC — поле контроля кадра (1 байт, не используется); DA — адрес получателя (6 байт); SA — адрес отправителя (6 байт); RI — информационное поле маршрутизатора (0-30 байт); поле информации; FCS — контрольная последовательность (4 байта). Формат адреса получателя аналогичен формату адреса, используемому в стандарте Ethernet, а в адресе отправителя вместо адреса устанавливается бит, определяющий наличие информационного поля маршрутизатора. Оно содержит данные для управления сетью и логического контроля соединений, а также данные пользователя и может включать произвольное количество байт при условии, что их общее число (в этом поле и поле маршрутизатора) не превышает 4502.
Кадр тестирования соединений стандарта IEEE 802.12 напоминает обычный кадр Ethernet с некоторыми модификациями. Поле данных тестового пакета состоит из 596 нулевых байт.
Физический уровень организует передачу битов данных от одного узла к другому. В стандарте l00VG-AnyLan определены два подуровня физического уровня: не зависящий от физической среды и зависящий от нее. На подуровне, не зависящем от передающей среды, происходит подготовка данных, полученных с более верхних уровней. Кадрам приписывают заголовки и окончания, а затем они и отправляются на подуровень, зависящий от среды передачи.
При передаче данных в сетях, построенных на витой паре, кадр должен быть отправлен ближайшему концентратору, который и передаст его получателю. Процесс передачи происходит в несколько этапов.
1. После получения сигнала «свободен» от своего концентратора, узел посылает ему сигнал нормального приоритета. Получив этот сигнал, концентратор перестает передавать сигнал «свободен» этому порту. При этом происходит освобождение линии связи для передачи.
2. Концентратор оповещает всех потенциальных получателей пакета о том, что им может быть передан пакет. Все возможные получатели освобождают линии связи и позволяют концентратору передавать данные по всем четырем каналам. Отправитель при обнаружении освободившихся линий начинает подготовку данных к отправке и после этого передает их на физический уровень.
3. На физическом уровне пакет поступает на концентратор.
4. Концентратор получает пакет и идентифицирует адрес получателя.
5. Пакет отправляется получателю. Одновременно концентратор начинает посылать сигнал «свободен» всем незадействованным в процессе узлам.
В сетях на оптоволокне или экранированной паре передача данных происходит аналогично. Небольшие отличия определяются наличием постоянно действующих в обе стороны каналов. Узел, например, может получать пакет и одновременно отправлять запрос на обслуживание.
Способность технологии l00VG-AnyLan обеспечивать доступ к сетевым ресурсам согласно приоритету запросов делает ее привлекательной для сетевых приложений, требующих гарантированного времени реакции сети, в частности для мультимедиа-приложений и передачи видеоинформации. В силу ряда причин данная технология не получила ожидаемого распространения. Однако сетевые устройства с ее поддержкой продолжают предлагаться на рынке.
Gigabit Ethernet
Технология Gigabit Ethernet представляет собой дальнейшее развитие стандартов 802.3 для сетей Ethernet с пропускной способностью 10 и 100 Мбит/с. Основная цель Gigabit Ethernet состоит в значительном повышении скорости передачи данных с сохранением совместимости с уже установленными сетями на базе Ethernet. Необходимо обеспечить возможность пересылки данных между сегментами, работающими на разных скоростях, что помимо всего прочего позволило бы упростить архитектуру существующих мостов и коммутаторов, применяющихся в больших промышленных сетях.
Разработка технологии Gigabit Ethernet началась в ноябре 1995 года, когда была сформирована рабочая группа (IEEE 802.3z), рассматривающая возможность развития Fast Ethernet до гигабитных скоростей. После утверждения полномочий этой группы работа над стандартом стала продвигаться быстрыми темпами. При разработке этой технологии были поставлены следующие задачи.
q Достичь скорости передачи 1 Гбит/с.
q Использовать формат кадра Ethernet 802.3.
q Соответствовать функциональным требованиям стандарта 802.
q Предусмотреть простое взаимодействие между сетями со скоростями 10, 100 и 1000 Мбит/с.
q Сохранить неизменными минимальный и максимальный размер кадра согласно существующему стандарту.
q Предоставить поддержку полу- и полнодуплексного режима работы.
q Поддерживать топологию «звезда»
q Использовать метод доступа CSMA/CD с поддержкой по крайне мере одного повторителя в домене коллизий (под доменом коллизий понимается область, в пределах которой кадры от различных станций могут конфликтовать друг с другом).
q Поддерживать спецификации ANSI Fibre Channel FC-1 и FC-0 (оптоволоконный кабель) и, если возможно, медный кабель.
q Предоставить семейство спецификаций физического уровня, которые поддерживали бы канал длиною не менее:
· 500 м на многомодовом оптоволоконном кабеле;
· 25 м на медном проводе;
· 3 км на одномодовом оптоволоконном кабеле.
q Определить методы контроля потока.
q Стандартизовать независимый от среды интерфейс GMII (Gigabit Ethernet Media Independent Interface).
В основном, продукты, поддерживающие технологию Gigabit Ethernet, планируется внедрять в центре корпоративной сети. Наиболее быстрый и простой путь получения отдачи от внедрения Gigabit Ethernet состоит в замене традиционных коммутаторов Fast Ethernet на концентраторы или коммутаторы Gigabit Ethernet. Это приводит к тому, что в сети появляется некая иерархия скоростей. Персональные компьютеры могут подключаться со скоростью 10 Мбит/с к коммутаторам рабочих групп, которые затем связываются с коммутаторами Fast Ethernet, имеющими порты для связи со скоростью 1 Гбит/с.
К недостаткам технологии Gigabit Ethernet можно отнести отсутствие встроенного механизма поддержки качества обслуживания. Как и ее предшественники, технология предполагает конкуренцию за доступ к среде передачи без какой-либо гарантии качества обслуживания. Однако пользователи Gigabit Ethernet для обеспечения качества обслуживания могут воспользоваться протоколами на базе IP, такими как RSVP. Они позволяют резервировать ресурсы маршрутизаторов для обеспечения необходимой скорости передачи данных. Достоинство такого подхода заключается в том, что удается сохранить основную часть капиталовложений в маршрутизаторы. Но если сеть предназначена для интенсивного трафика с отличающимися характеристиками, то в этом случае технология ATM сможет обеспечить лучшее качество обслуживания, чем Giga-bit Ethernet.
Очевидно, что с ростом требований приложений загрузка каналов связи корпоративных серверов также возрастет. Для повышения производительности можно подключать серверы к коммутатору по каналу связи со скоростью 1 Гбит/с. Однако следует убедиться, что сервер способен поддерживать такую скорость обмена информацией. Таблица 1.5 содержит теоретический верхний предел пропускной способности шин для некоторых архитектур серверов.
Таблица 1.5. Пропускная способность шин серверов
Тип шины
| Пропускная способность, Мбит/с
| ISA
|
| EISA
|
| МСА
|
| PCI (32 бита, 33 Мгц)
|
| РCI (64 бита, 66 М гц)
|
| Самым простым способом получения немедленной выгоды от использования новой технологии является организация на ее основе магистрали сети с последующим подключением серверов. Кроме установки новых коммутаторов и сетевых адаптеров, никаких изменений не потребуется.
|