Пиши Дома Нужные Работы

Обратная связь

Методические рекомендации и последовательность выполнения

Задание выполняется на формате А3 в масштабе 1:2.

Пример выполненного задания см. на рисунке 1.

В примере рассматривается развертка призмы способами нормального сечения и раскатки.

1. Вначале необходимо перечертить горизонтальную и фронтальную проекции фигуры (в уменьшенном масштабе). Далее необходимо определить натуральную величину всех прямых и плоскостей, входящих в состав многогранника. Для этого необходимо проанализировать их положение относительно плоскостей проекций. Натуральную величину сечения наклонной плоскостью следует найти способом замены плоскостей проекций и способом вращения вокруг проецирующей прямой. Если в варианте присутствуют несколько наклонных сечений, то для каждого из них выбрать один из способов, но различные.

2. Задняя грань призмы параллельна фронтальной плоскости проекции, поэтому переносим ее в соответствии с размерами в горизонтальной связи правее. К ней достраиваем оставшиеся три грани боковой поверхности. Заметим, что два основания призмы и сечение 6-7-8-11-12 параллельны горизонтальной плоскости проекции, следовательно, натуральные величины необходимых отрезков замеряем с горизонтальных проекций. К развертке боковой поверхности перпендикулярно пристраиваем натуральную величину сечения в наклонной плоскости и часть верхнего основания.

3. В горизонтальной связи с горизонтальной проекцией переносим многоугольник 6-7-8-11-12. К нему пристраиваем в соответствующие направления боковые прямоугольники сквозного паза. Заметим, что отрезки 6-5, 12-13, а также 8-9, 11-10 равны между собой и параллельны фронтальной плоскости проекции, поэтому их натуральную величину замеряем с фронтальной проекции. С целью более рационального раскроя листового материала части нижнего основания (прямоугольные треугольники) соединяем с полученной разверткой поверхности сквозного паза.



Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму. Чем больше углов в призме, тем точнее развертка (при n → ∞призма преобразуется в цилиндр). При выполнении развертки цилиндра рекомендуется вписывать 12-угольную призму.

4. Обвести основной контур, оставив линии построения тонкими. Линии сгиба – штрих - пунктирная с двумя точками тонкая. Заполнить штамп основной надписи.


Рисунок 1 – Пример выполнения задания «Развертка призмы».


ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

Цель: овладение знаниями для построения линий пересечения поверхностей на проекционном комплексном чертеже, и на этой основе развитие навыков выполнения видов, сечений, разрезов.

Задание:

1. По заданным размерам вычертить геометрические тела в трех проекциях.

2. Построить линию пересечения.

3. Определить видимость.

Теоретические сведения

Две поверхности в пространстве пересекаются по кривой или ломаной линии, которую называют линией пересечения. Линия пересечения находится по точкам, которые строятся при помощи вспомогательных поверхностей. В качестве вспомогательных поверхностей применяются плоскости или другие поверхности, например сферические.

Изображение детали на ортогональной проекции ограничено замкнутой очерковой линией, как проекцией контура видимости, внутри которого расположены различные линии пересечения поверхностей. В этой связи приобретает особое значение умение усматривать за каждой линией чертежа характер и положение линии в пространстве. Учитывая многообразие возможных вариантов сочетания пересечения поверхностей различного вида и взаимного расположения, а так же положения относительно плоскостей проекций, практически невозможно их проиллюстрировать. Поэтому особое значение имеет осмысление общих закономерностей и принципов, на которые опирается построение линии пересечения поверхностей. Прежде всего, к таким закономерностям следует отнести четыре случая пересечения поверхностей и связанные с ними характер линии их пересечения (рис. 1).

Для лучшего восприятия линии пересечения – общего элемента двух пересекающихся поверхностей, горизонтальный цилиндр извлечен из вертикального.

Рассмотрим характер линии пересечения поверхностей в зависимости от их взаимного расположения.

I – частичное врезание (линия пересечения есть некоторая замкнутая пространственная линия).

II – одностороннее соприкасание, когда две поверхности имеют общую касательную плоскость (линия пересечения есть замкнутая линия, которая один раз самопересекается в виде восьмерки).

III – полное проницание (линия пересечения распадается на две замкнутые линии).

IV – двухстороннее соприкасание – поверхности имеют две общих касательных плоскости (линия пересечения есть некоторая пространственная линия, которая дважды самопересекается).

 

Рисунок 1 – Характер линии пересечения поверхностей геометрических тел в зависимости от их взаимного расположения на примере цилиндров

Две поверхности в пространстве пересекаются по кривой или ломаной линии, которую называют линией пересечения. Линия пересечения находится по точкам, которые строятся при помощи вспомогательных поверхностей. В качестве вспомогательных поверхностей применяются плоскости или другие поверхности, например сферические.

Вспомогательные поверхности выбирают с таким расчетом, чтобы в пересечении с данными поверхностями получились простые и удобные для построения линии – прямые или окружности.

Методические рекомендации

Задание выполняется на формате А3.

Варианты задания представлены в табл. 1.

Пример выполнения задания представлен на рис. 3. Задание выполнить согласно поэтапному решению рис. 2.

Для выполнения задания проработать следующие теоретические вопросы: точка и линия на поверхности; сечение поверхности плоскость; способы построения линии взаимного пересечения поверхностей; правила построения точек и линий на развертках.

Следует отметить, что в пересечении двух плоскостей получается прямая линия, двух многогранников – ломанная пространственная линия, двух тел вращения – кривая плоская или пространственная, тела вращения с многогранником – плоская кривая и прямая линии. Для построения точек строят линию пересечения каждого заданного тела с посредником и находят точки искомой линии пересечения. Определяют ее видимость.

Для решения задачи необходимо осуществить рациональный выбор вспомогательных секущих плоскостей-посредников, выбирая такие вспомогательные поверхности, которые в пересечении заданными поверхностями давали бы простые для построения линии, например прямые линии, окружности.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.