Открытая прокладка кабелей по стенам зданий 7.4.1 При выборе способа крепления кабелей необходимо учитывать структуру материала, из которого выполнено стеновое основание (бетон, шлакобетон, гипсолит, кирпич, дерево и т.п.), а также конструктивные формы строительных элементов здания.
При этом предпочтение должно отдаваться наиболее прогрессивным и индустриальным способам, которые исключают трудоемкие пробивные работы, обеспечивают быстроту, удобство выполнения креплений и позволяют нагружать установленные крепежные конструкции в кратчайший срок после их установки.
В этом отношении рекомендуется пристрелка с помощью строительно-монтажного пистолета крепежных деталей или подвешивание кабелей на стальном канате по технологии, приведенной в 7.2.12.
7.4.2 До начала работ должны быть проверены электрические параметры кабелей, подготовлен необходимый инструмент, проверена исправность электроинструментов, а также лестниц и стремянок.
7.4.3 При прокладке кабелей работы должны выполняться в следующей технологической последовательности:
а) разметка трассы прокладки кабеля;
б) заготовка (подготовка) трассы прокладки кабелей;
в) прокладка и крепление кабеля;
г) установка и крепление защитных желобов;
д) заделка борозд, отверстий и штукатурка нарушенной поверхности стен.
7.4.4 Выбор трасс прокладки кабелей (проводов) должен производиться с учетом требований проекта, конфигурации строительных оснований, наличия скрытых электропроводок, сантехнических и других коммуникаций, а также в соответствии с требованиями защиты кабелей от механических повреждений.
7.4.5 Разметку следует производить с учетом следующих требований:
а) трасса прокладки кабеля распределительной телефонной сети по наружным стенам должна располагаться на высоте не менее 2,8 и не более 5,0 м от земли, а по внутренним стенам – на высоте не менее 2,3 м от пола и 0,1 м от потолка. Если указанная высота прокладки не может быть обеспечена, должна быть предусмотрена защита кабеля от повреждений;
б) расстояние между телефонным кабелем, проложенным по стене, и проходящими параллельно изолированными проводками осветительной, силовой или радиотрансляционной сети должно быть не менее 25 мм;
в) вертикальные направления трассы кабелей должны размечаться отвесно, с учетом архитектурных линий;
г) кабель разрешается пропускать сквозь отверстия в карнизах и других выступах зданий;
д) в швах между бетонными панелями размещать крепления запрещается;
е) на участках параллельной прокладки двух кабелей разрешается крепить их общей фигурной скобой или двумя скрепами под общий винт;
ж) сквозные отверстия, пробиваемые для прохода кабелей через стены и перегородки, могут быть общими для двух и большего числа кабелей;
з) при параллельной прокладке нескольких кабелей по одной трассе их взаимное расположение должно обеспечивать минимальное количество их пересечений при ответвлениях;
и) распределительные коробки должны располагаться на стене так, чтобы к ним был обеспечен свободный доступ на расстоянии от потолка не менее 150 мм. Запрещается устанавливать распределительные коробки над дверями, проемами и окнами.
7.4.6 Разметку трасс прокладки кабелей необходимо выполнять в следующей последовательности:
а) в соответствии с рабочими чертежами определить и разметить места установки оконечных устройств (распределительных коробок, кабельных ящиков, боксов и т.п.);
б) разметить точки провешивания осей трасс и их поворотов, места пробивки сквозных отверстий, проходов, нанося мелом или карандашом их наружные очертания;
в) с помощью отбойного шнура, на поверхность которого нанесен сыпучий краситель (синька, уголь, мел и т.п.), нанести линии трасс. При этом вертикальные и горизонтальные линии разметки должны быть параллельны линиям сопряжений стен и потолков;
г) с помощью линейки-шаблона разметить места установки крепежных деталей, соблюдая следующие расстояния: для прокладки кабелей распределителей сети по горизонтали – через каждые 350 мм, по вертикали - через 500 мм, в местах поворота кабеля -100 мм от вершины угла в обе стороны.
Нанесение линий прокладки кабеля производят обычно два монтажника связи - кабельщика, которые, наметив высоту прокладки кабеля по точкам разметки, производят отбивку шнуром линий трасс. В качестве прогрессивного приспособления, сокращающего затраты труда при разметке трасс, рекомендуется применять линейку-рамку, с помощью которой разметка выполняется одним монтажником (рисунок 7.14).
Рисунок 7.14 - Применение линейки-рамки для разметки трассы при открытой прокладке кабелей по стенам зданий
7.4.7 После разметки следует производить работы по подготовке трассы, заключающиеся в установке крепежных деталей и сверлении (пробивке) отверстий для устройства проходов кабелей через стены и потолки, а также устройство борозд на пересечениях трассы кабеля с препятствиями.
Крепежные детали могут устанавливаться в просверленные (пробитые) гнезда.
В качестве крепежных деталей применяются: скрепы пластинчатые из тонколистовой оцинкованной стали для крепления кабелей с наружным диаметром до 15 мм (рисунок 7.15), фасонные скобы для крепления кабелей с наружным диаметром от 10 до 29 мм (рисунок 7.16).
7.4.8 При установке крепежных деталей в гнезда их сверление (пробивку) рекомендуется производить с помощью сверлильных машин со сверлами, имеющими наконечники из высокопрочной стали. Пробивка может выполняться также электрическими молотками, оснащенными бурами диаметром 16 и 24 мм, а также пневматическими молотками, оснащенными трубчатыми пробойниками с твердосплавными зубьями. Рабочие инструменты для пробивных работ показаны на рисунке 7.2.17.
Рисунок 7.15 - Скрепка пластинчатая Рисунок 7.16 - Скоба фасонная
7.4.8 При установке крепежных деталей в гнезда их сверление (пробивку) рекомендуется производить с помощью сверлильных машин со сверлами, имеющими наконечники из высокопрочной стали. Пробивка может выполняться также электрическими молотками, оснащенными бурами диаметром 16 и 24 мм, а также пневматическими молотками, оснащенными трубчатыми пробойниками с твердосплавными зубьями. Рабочие инструменты для пробивных работ показаны на рисунке 7.2.17.
а) цилиндрическое сверло с пластинками из твердого сплава; б) спиральное сверло с пластинками из твердого сплава; в) пробойник к электро- и пневмомолотку; г) коронка типа КГС для сверления гнезд; д) шлямбур для ручной сверлильной машины; е)сверла с наконечниками из твердого сплава
Рисунок 7.17 – Рабочие инструменты для пробивных работ
Если ручную сверлильную машину по каким-либо причинам применить нельзя, гнезда пробиваются вручную при помощи коротких шлямбуров, пробойников или зубил.
7.4.9 Во избежание повреждений электрических проводов, проходящих под штукатуркой или в толще стен, место, выбранное для сверления или пробивки отверстий в стенах, должно быть предварительно проверено. Проверка наличия скрытых электропроводок производится внешним осмотром по расположению установленной арматуры (светильников, выключателей, распаечых коробок, щитков и т.п.).
К работам по сверлению, пробивке, штроблению следует приступать при наличии полной уверенности, что на пути сверла, пробойника, шлямбура отсутствуют скрытые коммуникации.
7.4.10 В заготовленные гнезда рекомендуется устанавливать:
а) дюбели пластмассовые с вворачиваемыми в них шурупами (рисунок 7.18,а);
б) дюбели с распорной гайкой (рисунок 7.18,6);
в) спирали из мягкой стальной проволоки с вворачиваемыми в них шурупами (рисунок 7.19,а);
г) свернутый в трубку пластикат с ввернутым в нее шурупом (рисунок 7.19,6);
д) пластинчатые скрепы, вмазываемые в гнездо строительным гипсом или закрепленные дюбелем-гвоздем.
а) пластмассовый, б) - с распорной гайкой
Рисунок 7.18 – Дюбели
7.4.11 В связи с тем, что принцип закрепления дюбеля в гнезде основан на расклинивании его стенок при ввинчивании шурупа, необходимо, чтобы диаметр гнезда превышал диаметр Дюбеля не более, чем на 2,0 мм, а глубина равнялась длине дюбеля.
7.4.12 К деревянным стенам фасонные скобы должны крепиться шурупами длиной от 25 до 30 мм или толевыми гвоздями той же длины (рисунок 7.20).
Рисунок 7.20 - Крепление фасонной скобы к деревянной стене
15) Коррозия кабелей и их защита
Коррозией называется разрушение поверхностей металлов вследствие электрохимических и химических процессов. В зависимости от условий протекания таких процессов коррозия может быть электрической, почвенной, межкристаллитной и атмосферной.
Электрическая коррозия возникает от прохождения по металлическим оболочкам кабелей блуждающих электрических токов, источниками которых могут быть рельсовые пути трамвайных и электрифицированных железных дорог, установки дистанционного питания и т.п. В электрических цепях трамвая и электрифицированных железных дорог в качестве обратного провода используются рельсовые пути и из-за значительного сопротивления рельсовых стыков, плохой изоляции их от земли, изменения направлений линий (путей) часть тока ответвляется в землю. При совпадении направления тока с проложенными в земле кабелями ток проникает в металлическую оболочку и проходит по ней до места ответвления к источникам (тяговым подстанциям). Место входа блуждающего тока в кабель называется катодной зоной, а место выхода — анодной. В анодной зоне ток уносит в землю мельчайшие частицы металла, разъедая оболочку.
Почвенная коррозия возникает при взаимодействии металла с окружающей средой (грунтом) и представляет собой электрохимическое разрушение металлических сооружений, вызванное действием почвы, грунта, почвенных и грунтовых вод и т.п. Содержание в грунте или почве минеральных солей, органических веществ, газов и влаги определяет их коррозионную активность. С повышением температуры скорость коррозии металла увеличивается.
Межкристаллитная коррозия возникает при вибрации кабелей на мостах и проездах с интенсивным движением, при длительной перевозке, в отдельных местах подвески и т.п. Разрушение оболочек кабелей в этом случае происходит преимущественно по границам кристаллов (зерен) металла и вызвано действием окружающей среды при переменных механических нагрузках или без них.
Атмосферная газовая коррозия, как правило, носит электрохимический характер и возникает при окислении металла, например, кислородом воздуха, при повышенной температуре.
Сооружения связи могут подвергаться всем видам коррозии, однако наибольшее распространение получила электрическая коррозия. Свинцовые оболочки кабелей подвержены разрушениям в анодных зонах, однако может наблюдаться и «катодная коррозия». Алюминиевые оболочки кабелей подвержены коррозии в равной степени в анодных, катодных и знакопеременных зонах. Стальные оболочки кабелей обычно разрушаются в вершинах гофр.
Для определения степени опасности коррозии и выбора средств защиты сооружений проводят исследования и электрические измерения. При защите кабелей от электрической коррозии проводят две группы мероприятий. Первая группа — мероприятия, способствующие уменьшению блуждающих токов в земле за счет увеличения переходного сопротивления между рельсами и землей, проводимости рельсовых путей, количества тяговых подстанций, количества и проводимости отсасывающих линий. Вторая группа — мероприятия, способствующие уменьшению блуждающих "токов в оболочках кабелей, их вредного влияния.
Наибольшее распространение получили способы защиты кабелей посредством электрических дренажей, катодных станций и протекторов. Электрические дренажи, действие которых заключаются в отводе блуждающих токов из защищаемых кабелей к источнику этих токов, могут быть прямыми, поляризованными и усиленными. В состав оборудования дренажей входят реле, реостаты, рубильники, трансформаторы, измерительные приборы, смонтированные в металлических шкафах. Выводные концы дренажей подключаются к кабелям и рельсам. Катодную защиту применяют тогда, когда невозможно или нецелесообразно использовать электрические дренажи. Принцип действия катодной защиты заключается в создании отрицательного потенциала на защищаемых кабелях за счет токов катодной станции. Катодная станция представляет собой встроенный выпрямитель, смонтированный в металлическом шкафу. Выводные концы ее подключаются к кабелям и к анодному заземлению, и защитный ток проходит от положительного полюса станции через анодное заземление на землю, затем на оболочку кабелей и на отрицательный полюс станции.
Для защиты кабелей от почвенной коррозии и (в определенных условиях) от электрокоррозии применяются протекторы — анодные электроды. Протектор представляет собой стержень из магниевого сплава, подключаемый к кабелю. Принцип действия протекторной защиты заключается в том, что при соединении протектора, имеющего более низкий потенциал по отношению к свинцу, со свинцовой оболочкой кабеля он окажется анодом, с которого ток будет стекать в землю. Свинцовая оболочка окажется под отрицательным потенциалом. Протекторы устанавливают непосредственно в грунт с любой стороны защищаемого кабеля, а в колодцах кабельной канализации — в днище или за стенкой.
Для повышения продольного электрического сопротивления металлических оболочек кабелей их секционируют изолирующими муфтами типа МИ, МИС или ГМСИ. Муфты устанавливают в местах пересечения линий электрифицированных железных дорог, входа в тоннели метрополитена, пересечения с другими металлическими сооружениями, где наблюдается вход или выход блуждающего тока в кабель.
Существуют и другие способы защиты кабелей, но они менее распространены. Защита кабелей может осуществляться комплексно с одновременным использованием дренажей, катодных станций и протекторов совместно с другими металлическими сооружениями (газопровод, водопровод, электрокабели и др).
Для измерения блуждающих токов на подземных междугородных линиях оборудуют контрольно-измерительные пункты (КИП), представляющие собой железобетонные столбики длиной 1200 мм, зарываемые в грунт на глубину 700 мм, на определенных расстояниях от трассы кабеля. В городских условиях измерение потенциала металлических оболочек кабелей производят в кабельных колодцах.
С целью выравнивания потенциала между оболочками проложенных в одном направлении кабелей их перепаивают поперечными отрезками свинцовой ленты в кабельных шахтах, шкафных и разветвительных колодцах, в колодцах при пересечении с рельсами электрифицированных дорог и через два-три колодца на прямолинейных участках трассы. Подземные кабели перепаивают отрезками кабеля ПРППМ 1X2X1,2, присоединяемыми к стальной броне.
Металлические цистерны НУП защищают в заводских условиях при их изготовлении и в процессе установки. Наружная стенка цистерны покрывается 3 — 4 слоями расплавленного битума, стеклотканью, битумом и крафт-бумагой или мелом.
|