Пиши Дома Нужные Работы

Обратная связь

V. МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ

Магнитные моменты электронов и атомов

Некоторые вещества, помещенные в магнитное поле, становятся носителями магнитного поля, т.е. являются магнетиками. Для объяснения этого эффекта можно воспользоваться гипотезой Ампера.

В любом веществе существуют микротоки, обусловленные движением электронов в молекулах. Их еще называют молекулярными токами.

Приближенно можно считать, что электрон в атоме движется по круговой орбите (рис. 5.1). Тогда движущийся электрон эквивалентен круговому току, поэтому он обладает орбитальным магнитным моментом:

pm =iSn,(5.1)

где iсила тока, Sn- площадь орбиты, pmорбитальный магнитныймомент..

С другой стороны, движущийся по круговой орбите электрон обладает орбитальным механическим моментом ,

гдеI – момент инерции электрона, ω – угловая скорость: I = mr2; ω = 2πν; S = πr2.

 

L = mr2. 2πν = 2mνS , (5.2)

где ν – частота вращения электрона.

 

Если, pm = iS; i = (i= q/t, t=T=1/ν, q=e), то

pm = e νS. (5.3)

Из формулы (5.2): . Эту формулу подставляем в (5.3):

,

где – гиромагнитное отношение орбитальных моментов, которое является универсальной постоянной.

 

Однако эксперимент дает значение гиромагнитного отношения другим, равным т.е. в 2 раза большим, чем введенная ранее величина g.

Впоследствии было доказано, что кроме pm и L электрон обладает собственным механическим моментом импульса LSспином.

Спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона соответствует собственный (спиновый) магнитный момент:

Величина gS – гиромагнитное отношение спиновых моментов.

Таким образом, магнитный момент электрона равен сумме орбитального магнитного момента pm и спинового магнитного момента pmS:



Магнитный момент атома складывается из магнитных моментов, входящих в его состав электронов и магнитного момента ядра. Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают (масса ядра >> массы электронов). Следовательно, магнитный момент атома (молекулы):

 

Диа- и парамагнетики

 

Магнетики по своим магнитным свойствам подразделяются на 3 основные группы: 1) диамагнетики; 2) парамагнетики; 3) ферромагнетики.

Рассмотрим действие магнитного поля на движущиеся в атоме электроны (микротоки).

Предположим, что электрон в атоме движется по круговой орбите.

Если орбита электрона ориентирована относительно вектора В0 (В0 – внешнее магнитное поле) произвольным образом, составляя с ним угол α, то можно доказать, что она прецессирует вокруг вектора В0. Это означает, что вектор pm,перпендикулярный к плоскости орбиты, сохраняя постоянным угол α, вращается вокруг вектора В0 с некоторой угловой скоростью.

Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например диск волчка при замедленном движении.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движение, которое эквивалентно круговому току. Так как этот микроток индуцирован внешним магнитным полем, то согласно закону Ленца, у атома появляется магнитное поле, направленное противоположно внешнему полю –. Такие индуцированные магнитные поля атомов (молекул) складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле ( – собственное магнитное поле). Этот эффект называется диамагнитным, а вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками:

 

ВД = В0B’

 

Когда В0 = 0 (внешнее магнитное поле отсутствует), то диамагнетик ненамагнитен, т.к. магнитные моменты электронов взаимно компенсируются (суммарный магнитный момент атома).

К диамагнетиками относятся некоторые металлы (Cu, Ag, Au, Bi),большинство органических соединений, смолы, углерод и т.д.

Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойственен всем веществам.

Однако существуют и парамагнетики – вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.

У парамагнетиков, когда В0 = 0 магнитные моменты электронов не компенсируют друг друга: и атом парамагнетика всегда обладает магнитным моментом Но вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно и поэтому парамагнетики магнитными свойствами не обладают.

Когда В0 ≠ 0, то устанавливается преимущественная ориентация магнитных моментов атомов по направлению внешнего поля. Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его:

ВП = В0 + B’

К парамагнетикам относятся редкоземельные элементы, Pt, Al и т.д.

Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного.

 

Намагниченность

 

Вектор намагниченности J – количественная мера намагничивания вещества:

(5.4)

где магнитный момент i-й молекулы, – магнитный момент магнетика, ΔV – малый объем магнетика.

 

Магнитное поле в веществе

результирующее поле, (5.5)

– внешнее магнитное поле; – поле микротоков. подставляем в формулу (5.5):

 

. (5.6)

Таким образом:

–вектор напряженности магнитного поля.

Как показывает опыт, в несильных полях: J ~ H поля, вызывающего намагничивание, т.е.

, (5.7)

где χ – магнитная восприимчивость вещества, χ – безразмерная величина.

 

На рисунке представлена линейная зависимость для парамагнетиков и диамагнетиков.

χД < 0 – для диамагнетиков, так как поле микротоков противоположно внешнему.

χП > 0 – для парамагнетиков (поле микротоков совпадает с внешним).

Подставляем формулу (5.7) в формулу (5.6):

,

где μ = 1 + χ – магнитная проницаемость вещества. Следовательно:

(5.8)

Так как, χ для диа- и парамагнетиков очень мало (порядка 10-6 – 10-4), то μ ≈ 1. Это просто понять, так как магнитное поле микротоков намного меньше внешнего поля: B’ << В0.

χ Д < 0 и μД ≤ 1 – для диамагнетиков;

χ П > 0 и μП ≥ 1 – для парамагнетиков.

 

Ферромагнетики

В магнитном отношении все вещества можно разделить на слабомагнитные (парамагнетики и диамагнетики) и сильномагнитные (ферромагнетики). Пара- и диамагнетики при отсутствии (внешнего) магнитного поля, как мы знаем, не намагничены и характеризуются однозначной зависимостью намагниченности Jот Н: J =χH.

Ферромагнетики – твердые вещества, обладающие спонтанной намагниченностью, т.е. намагничены уже при отсутствии внешнего магнитного поля. Типичные представители ферромагнетиков – это железо, кобальт, никель и многие их сплавы. Это элементы, атомы которых имеют недостроенные внутренние d-облочки. У этих веществ имеются постоянные (не зависящие от внешнего магнитного поля) магнитные моменты электронных оболочек атомов вещества (спиновых или орбитальных или обоих вместе).

Зависимость Jот H ( J= χH )у пара- и диамагнетиков изменяется линейно. Jот Hу ферромагнетиков зависит сложным образом. На рис. 5.1 приведена основная кривая намагничивания ферромагнетика.

 

При Н=0,J=0 и при небольших значениях Н, намагниченность J достигает насыщения Jн.

B =µ0(H + J)также растет с увеличением Н,а после достижения состояния насыщения В продолжает расти с увеличением Н по линейному закону :

B =µ0H +const,где const =µ0Jн.

 

На рис. 5.2 приведена основная кривая намагничения на диаграмме В-Н. Ввиду нелинейной зависимости В от Н для ферромагнетиков нельзя ввести величину µ как постоянную, характеризующую магнитные свойства каждого данного ферромагнетика. Однако по-прежнему считают, что µ = В/µ0Н, при этом µ является функцией Н (Рис. 5.3). Магнитная проницаемость достигает максимального значенияµmax при состоянии насыщения В. Так, например,длячистогожелеза –5000.

Понятие µ применяют толькок основной кривой намагничивания, так как зависимость B = f(H)неоднозначна.

Кроме нелинейной зависимости В от Н или J от Н для ферромагнетиков характерно наличие гистерезиса (рис. 5.4). Если довести намагничивание до насыщения 0 → А, а затем уменьшить Н, то кривая намагниченности В=f(Н) пойдет не по первоначальному пути А→0, а по кривой А→С. В результате, когда Н внешнего поля равна 0 намагничивание не исчезает и характеризуется величиной Brостаточной индукцией (ей соответствует Jr).C наличием Brcвязано существование постоянных магнитов. Величина В обращается в нуль (точка «C») лишь под действием поля Нс,имеющего направление, противоположное полю, вызвавшему намагничивание. Нс– коэрцитивная сила.

Если максимальные значения Н таковы, что намагниченность достигает насыщения, получается максимальная петля гистерезиса. Если при амплитудных значениях Н насыщение не достигается, получается петля, называемая частным циклом. Частных циклов существует бесконечное множество, они лежат внутри максимальной петли гистерезиса.

Гистерезис приводит к тому, что намагничивание ферромагнетика не является однозначной функцией напряженности Н, оно в сильной мере зависит от предыстории образца – от того, в каких полях он побывал.

Величины: Br; Нс; µmaxосновные характеристики ферромагнетика.

Если Нсвелика, ферромагнетик называется жестким. Для него характерна широкая петля гистерезиса. Ферромагнетик с малой Нсназывается мягким. Опыт показывает, что при перемагничивании ферромагнетик нагревается. Можно показать, что в единице объема ферромагнетика выделяется теплота Qед., численно равная «площади» S петли гистерезиса:

Qед .

Температура Кюри. При повышении температуры способность ферромагнетиков намагничиваться уменьшается. При этом падают значения их магнитной восприимчивости χ и магнитной проницаемости µ, ослабляется гистерезис и уменьшается Jн.При некоторой температуре ТК,называемой температурой или точкой Кюри, ферромагнитные свойства исчезают. При Т > TK ферромагнетик превращается в парамагнетик.

Физическую природу ферромагнетизма удалось понять только с помощью квантовой механики. При определенных условиях в кристаллах могут возникать обменные силы, которые заставляют магнитные моменты электронов устанавливаться параллельно друг другу. В результате возникают области (размером 1-10 мкм) спонтанного намагничивания – домены (рис. 5.5).

В пределах каждого домена ферромагнетик намагничен до насыщения и имеет определенный магнитный момент. Направления этих моментов для разных доменов различны, поэтому при отсутствии внешнего поля Н = 0суммарный момент образца равен нулю и образец в целом представляется макроскопически не намагниченным. Разбиение ферромагнетика на домены происходит потому, что в этом случае энергия ферромагнетика уменьшается (2 начало термодинамики).

При включении магнитного поля Н ≠ 0при слабых полях наблюдается смещение границ доменов, в результате увеличиваются размеры доменов, моменты которых составляют с вектором Н меньший угол θ.

Например, домены 1 и 3 увеличиваются за счет доменов 2 и 4.Такой рост, в слабых полях, имеет обратимый характер.

При Н ≠ 0энергии отдельных доменов становятся неодинаковыми: энергияменьше для доменов, в которых вектор J образует с вектором Нострый угол, и больше, если угол тупой.

При дальнейшем увеличении Н, домены с меньшими θ, которые обладают в магнитном поле меньшей энергией, не поглотят целиком энергетически менее выгодные домены. На следующей стадии имеет место поворот магнитных моментов в направлении поля. При этом происходит одновременный поворот магнитных моментов электронов в пределах всего домена. Эти процессы являются необратимыми, что и служит причиной гистерезиса и остаточного намагничивания.

Указанные процессы намагничивания происходят с некоторой задержкой, т.е. смещение границ и поворот магнитных моментов отстают от изменения Н, что приводит к появлению гистерезиса.

 

Лабораторная работа






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2018 pdnr.ru Все права принадлежат авторам размещенных материалов.