Пиши Дома Нужные Работы

Обратная связь

Особенности местного иммунитета

Как было отмечено ранее, в структуре сис­темы иммунной защиты выделяют местный иммунитет, концепцию которого впервые высказал А. М. Безредка (1919). В отличие от общего, местный иммунитет формирует­ся в пределах кожных покровов и слизис­тых, имеющих обширную область контакта с окружающей средой и являющихся наиболее вероятными входными воротами экзогенных антигенов. Основная задача местного имму­нитета — обеспечение местной, локальной им­мунной защиты в пределах ткани. Кроме того, факторы местного иммунитета могут действо­вать экстракорпорально (выходить за пределы макроорганизма) — на поверхности кожных покровов и в составе секрета слизистых.

Система местного иммунитета не имеет вы­раженного анатомо-морфологического обо­собления. Между общим и местным имму­нитетом существует тесная связь. Во-первых, система общего иммунитета является резерв­ным источником факторов защиты. При на­рушении микроциркуляции локальный вос­палительный процесс быстро переходит в за­тяжную септическую форму. Во-вторых, при развитии инфекционного процесса отчетливо прослеживается взаимный переход местной и общей иммунной реакции одна в другую. В-третьих, между этими двумя системами постоянно осуществляется обмен факторами иммунитета (антитела, клоны антигенреак-тивных лимфоцитов и др.). Это важно для распространения по всему организму имму­нологической памяти (см. гл. 11, разд. 11.5), но также зачастую приводит к генерализации инфекции. Тем не менее система местного иммунитета функционирует достаточно обо­собленно и имеет ряд особенностей.

12.1.1. Иммунитет кожи

Кожа выполняет пограничную функцию. Как фак­тор механической защиты, она предохраняет макро-




организм от внешних воздействий и в случае повреж­дения способна самостоятельно его ликвидировать, восстановив свою целостность. Кожный покров име­ет также физико-химическую защиту в виде потовых и сальных желез, продукты которых обладают бакте-рицидностью. Кроме того, кожа наделена эффектив­ной системой местного иммунного реагирования.

Внешний слой кожи, эпидермис, формируется эпи­телиальными клетками — кератиноцитами. Эти клет­ки образуют несколько слоев. В толще кератиноцитов встречаются дендритные клетки двух типов: клетки Лангерганса и клетки Гренстейна. В тканях дермы и эпидермиса локализуются лимфоциты и тучные клет­ки. Лимфоидная популяция представлена в основном Т2-хелперами и Т-киллерами. В дерме и эпидермисе происходит дифференцировка незрелых Т-лимфоци-тов в зрелые клетки.

Кератиноциты— немигрирующие эпителиальные клетки, выполняющие в коже важную иммуноре-гуляторную функцию. На своей поверхности они экспрессируют МНС II класса, ко-стимулирующие молекулы CD40, 80, 86 и Fas-лиганд. Клетки синтези­руют широкий спектр цитокинов: ИЛ-1, -3, -6, -7, -8, -15, ФНО, be-ТФР, ГМ-КСФ, а-, be-ИФН, хемокины.

В покоящемся, неактивированном состоянии ке­ратиноциты обеспечивают только барьерную функ­цию, не связанную с индукцией иммунного ответа. Повреждающие кожу воздействия (травма, ожог, об­лучение, воспалительная реакция и пр.) или стимуля­ция со стороны иммунокомпетентных клеток активи­руют иммунорегуляторные свойства кератиноцитов. Они становятся способными презентировать анти­ген Т-хелперам, а благодаря синтезируемым цитоки-нам — активировать антительный иммунный ответ и супрессировать местную клеточную пролиферацию иммунных лимфоцитов.

Клетки Лангерганса— мигрирующие клеточные элементы, дендритные клетки миелоидной природы, или белые отростчатые эпидермоциты. Происходят из клеток костного мозга или циркулирующих ми-оноцитов, трансформируясь в дерме под действи­ем цитокинов. Продолжительность жизни около 20 суток. УФ-излучение губительно действует на них.


Экспрессируют на клеточной мембране МНС II клас­са, CD4, 40, синтезируют ИЛ-1, -12, а-, р-ИФН, ГМ-КСФ, хемокины.

Клетки Лангерганса выполняют функции АПК. Между тем процесс запуска ими иммунного ответа двухэтапный — он разобщен в пространстве и време­ни. Клетки способны захватывать и процессировать антиген. Однако на этом этапе дифференцировки клетки Лангерганса не способны экспрессировать полный набор ко-стимулирующих факторов, у них отсутствуют молекулы CD80, 86.

Локальная воспалительная реакция или цито-киновые стимулы активируют клетки Лангерганса. Захватившая антиген клетка мигрирует с током лимфы в регионарные лимфоузлы, где она дифференцируется в зрелую дендритную клетку—интердигитальную клет­ку лимфоузлов. Дифференцировка сопровождается изменением мембранного фенотипа — клетка начина­ет экспрессировать недостающие молекулы CD80, 86, а также синтезировать цитокины. Интердигитальная клетка теряет способность захватывать и процессиро­вать антиген, но при этом превращается в эффектив­ную АЛ К. Она активирует Т-хелперы и запускает спе­цифический иммунный ответ и формирование клеток иммунологической памяти.

Разобщение в пространстве и времени индукции в коже специфического иммунного ответа имеет важ­ное значение. Презентация антигена в лимфати­ческом узле сопрягает систему местного и общего иммунитета. Централизованное размножение клеток иммунологической памяти и их расселение вдоль всех кожных покровов обеспечивают местный имму­нитет кожи независимо от его инициации.

В случае инактивации клеток Лангерганса (напри­мер, УФ-облучением) функции АПК в коже начина­ют выполнять кератиноциты и клетки Гренстейна. Однако они потенцируют иммуносупрессию — угне­тение кожной иммунореактивности.

Антитела в коже не имеют большого значения, в эпидермисе нет В-лимфоцитов. Между тем развитие кожной иммунореактивности может сопровождаться антителогенезом. В коже развивается преимущественно клеточной иммунный ответ. Напряженность местного иммунитета в коже, также как и интегральное состоя­ние клеточного звена иммунитета в целом, диагности­руется постановкой кожно-аллергических проб.

12.1.2. Иммунитет слизистых

Местный иммунитет слизистых обеспечивает им­мунную защиту желудочно-кишечного и респира-


торного тракта и мочеполовой системы. Слизистые отличаются развитой лимфоидной тканью и высокой насыщенностью иммунокомпетентными клетками.

Лимфоидный состав слизистых имеет характерные особенности, обусловленные его формированием. Различают раннюю (реликтовую) и позднюю (совре­менную) компоненты. Ранняя компонента представ­лена gadeТ- и В1-лимфоцитами, которые на ранних этапах эмбриогенеза отселяются в периферические лимфоидные образования прямо из костного мозга и в дальнейшем развиваются автономно от централь­ных органов иммунной системы. Антигенные рецеп­торы этих клеток отличаются относительно низкой аффинностью, но обладают достаточно широким спектром чувствительности. Это позволяет им обес­печить первую линию защиты от микробной агрес­сии и необходимую отсрочку для активации поздней компоненты.

Клетки поздней компоненты заселяют слизистые гораздо позже ранней и развиваются под полным контролем со стороны центральных органов иммун­ной системы. К их числу относятся традиционные albeТ- и CD5~ В-лимфоциты, обладающие высокой специфичностью и аффинностью рецепторного ап­парата. Лимфоидные популяции поздней компо­ненты создают вторую линию иммунной защиты в слизистых, которая формирует высокоэффективный специфический иммунный ответ.

Наиболее ярким примером организации иммунной защиты слизистых является высокоразвитая лимфо-идная система желудочно-кишечного тракта. В ней различают две функциональные зоны — индуктив­ную и эффекторную.

Индуктивная зона сформирована лимфоидными фолликулами (в том числе аппендикса, пейеровых бляшек), в которых идентифицируются области пре­имущественного расселения Т- и В-лимфоцитов. Например, в В-области располагается герминативный (зародышевый) центр, где размножаются и созревают В-лимфоциты. Индуктивная зона практически полно­стью состоит из равных количеств Т- и В-лимфоцитов. Т-популяция на 2/3 представлена Т-киллерами и на 1/3 — Т-хелперами. В-лимфоциты — это в основном IgA-продуценты. Кроме того, в зоне обнаруживаются макрофаги и дендритные клетки.

Презентацию антигена, в основном, осуществляют дендритные клетки — короткоживущие (до 3 сут) клеточные элементы миелоидного происхождения. Эту же функцию могут выполнять макрофаги и В-лимфоциты. Помощь в презентации антигена оказы-


вают М-клетки эпителия. Они захватывают молекулы антигена в просвете органа и путем трансцитоза пере­носят его к АПК.

В индуктивной зоне осуществляется:

• презентация и распознавание антигена,

• индукция иммунного реагирования,

• формирование клонов антигенспецифич-ных Т-и В-лимфоцитов,

• дифференцировка В-лимфоцитов в IgA-продуценты.

Эфферентная зона включает околоэпителиальную область, где располагаются интраэпителиальные лимфоциты, и область lamina propria. Популяция интраэпителиальных лимфоцитов на 3/4 состоит из Т-киллеров, среди которых много gadeТ-лимфоцитов. Они обеспечивают функцию иммунологическо­го надзора за быстроразмножающимся эпителием. Презентируют антиген энтероциты. В активирован­ном состоянии они экспрессируют МНС II класса, синтезируют цитокины и хемокины (ИЛ-8). Однако энтероциты являются «неклассическими» АПК.

В lamina propria обнаруживается много Т- и В-лим­фоцитов, а также макрофаги и естественные киллеры. На долю Т-лимфоцитов приходится до 60 % всей лим-фоидной популяции. На 2/3 это Т-хелперы, остальные клетки — Т-киллеры, в том числе gadeТ-лимфоциты. Объем пула В-лимфоцитов достигает 40 %, полови­ну из их числа составляют В1-клетки. Подавляющее большинство антителопродуцентов (80 %) синтезирует полимерные молекулы IgA.

В lamina propria развивается преимущественно антительный ответ. Идет интенсивный биосинтез иммуноглобулинов классов А, М, G, и Е. Они дейс­твуют как в пределах самих тканей, так и в составе секрета слизистых, куда проступают в результате на­правленного транспорта (slg) или диффузии. Однако наибольшую функциональную нагрузку несет slgA (см. гл. 11, разд. 11.1.3), хорошо защищенный от про-теолитических ферментов секрета.

В собственной пластинке присутствует большое ко­личество фагоцитов. Привлеченные хемоаттрактан-тами, они способны совершать маятникообразные миграции: выходить через эпителий за его пределы (в просвет кишки, бронха, ротовой полости и т. д.) и воз­вращаться обратно. Подсчитано, что в ротовой полос­ти постоянно присутствует около 100 000 фагоцитов.

В пределах слизистых обнаруживается много туч­ных клеток и эозинофилов. Синтезируя вазоактив-ные амины (тучная клетка), токсины (эозинофил), ферменты, иммуноцитокины, липидные медиато-


ры и другие биологически активные вещества, они участвуют в регуляции иммунной и воспалительной реакции в пределах ткани. В случае гиперпродукции IgE и особой генетической предрасположенности тучные клетки потенцируют развитие аллергической реакции I типа (анафилаксия).

Сами эпителиоциты также принимают участие в осуществлении местного иммунитета. Они представ­ляют собой хороший механический барьер для пато­генов. Секрет слизистых также выполняет функции физико-химического барьера (см. гл. 9;разд. 9.2.1), а нормальная микрофлора, населяющая слизистые, — биологического, обеспечивая колонизационную ре­зистентность (см. разд. 9.2.3).

12.1.2.1. Особенности иммунитета ротовой полости

Организация иммунной защиты ротовой полости принципиально не отличается от описанной выше системы местного иммунитета слизистых. Она удач­но сочетает как факторы неспецифической резис­тентности, так и специфические иммунные факторы, обеспечивающие эффективную защиту полости рта от кариесогенных и иных болезнетворных микробов.

Неспецифические факторы резистентности рото­вой полости представлены в основном барьерными свойствами клеток слизистой оболочки и антимик­робной функцией слюны. Последняя занимает осо­бое положение в структуре защиты макроорганизма от микробной интервенции.

В течение суток слюнные железы макроорганиз­ма взрослого человека выделяют до 2,0 л секрета с выраженной энзиматической активностью. Слюна представляет собой не только мощный физико-хи­мический барьер, трудно преодолимый патогенами. Она также содержит широкий набор факторов, обла­дающих выраженными бактерицидными свойствами. В первую очередь, это лизоцим и лактоферрин, а также лактопероксидаза и отдельные компоненты комплемента. Кроме того, в слюне здоровых людей постоянно присутствуют клеточные элементы, обес­печивающие биологический барьер: полиморфно-ядерные лейкоциты и моноциты. Одномоментно в слюне ротовой полости содержится до 100 000 фаго­цитирующих клеток.

В соединительнотканной строме ротовой полости также обнаруживаются клеточные элементы системы неспецифической резистентности: активно мигриру­ющие тканевые макрофаги, фибробласты, грануло-циты и тучные клетки.


Ротовая полость обеспечена эффективной системой специфической иммунной защиты. Анатомически она представлена мощными миндалинами глоточно­го кольца, хорошо развитой системой лимфоидного дренирования в подчелюстных, подъязычных, око­лоушных и шейных лимфоузлах. В тканях обнаружи­ваются лимфоидные скопления, а в слюне — лимфо­циты и широкий спектр иммуноглобулинов изотипов A, M,G, и Е.

В слюне, как и в других секретах, доминирует IgA. Здесь его содержится заметно больше, чем в сыворот­ке крови. Наибольшую функциональную нагрузку несет секреторная форма IgA (slgA). Содержание IgM, IgG и IgE в слюне несколько меньше, чем в сы­воротке крови. Однако иммуноглобулины этих изо­типов также участвуют в иммунной защите ротовой полости. Снижение содержания в слюне иммуногло­булинов, особенно IgA, чревато гнойно-воспалитель­ными или аллергическими заболеваниями слизистой этого анатомического образования.

12.2. Особенности иммунитета при различ­ных состояниях

Реакция макроорганизма на антигены до­статочно однотипна, так как она ограниче­на набором факторов иммунной защиты и физиологическими возможностями самого макроорганизма. Однако в зависимости от природы антигена иммунная система не обя­зательно должна включать для его устранения весь имеющийся арсенал — в отношении кон­кретного антигена достаточно использовать лишь наиболее эффективные механизмы и факторы защиты. Поэтому при воздействии различных по природе и свойствам антиге­нов иммунное реагирование макроорганизма имеет свои особенности.

12.2.1. Особенности иммунитета при бактериальных инфекциях

Иммунная реакция макроорганизма в ответ на бактериальную инфекцию в значительной степени определяется факторами патогеннос-ти микроба и, в первую очередь, его способ­ностью к токсинообразованию. Различают антибактериальный (против структурно-фун­кциональных компонентов бактериальной клетки) и антитоксический (против белковых токсинов) иммунитет.


Основными факторами антибактериальной защиты в подавляющем большинстве случа­ев являются антитела и фагоциты. Антитела эффективно инактивируют биологически ак­тивные молекулы бактериальной клетки (ток­сины, ферменты агрессии и др.), маркируют их, запускают механизм антителозависимого бактериолиза и участвуют в иммунном фаго­цитозе. Фагоциты осуществляют фагоцитоз, в том числе иммунный, внеклеточный киллинг патогена при помощи ион-радикалов и анти-телозависимый бактериолиз.

Ряд бактерий, относящихся к факультатив­ным внутриклеточным паразитам, отличает­ся повышенной устойчивостью к действию комплемента, лизоцима и фагоцитов (неза­вершенный фагоцитоз). К их числу отно­сятся микобактерии, бруцеллы, сальмонел­лы и некоторые другие. В отношении этих микробов антитела и фагоциты недостаточно эффективны, а сам инфекционный процесс имеет склонность к хроническому течению. В такой ситуации макроорганизм вынужден переключать нагрузку на клеточное звено им­мунитета, что ведет к аллергизации организма по типу ГЗТ. Особое значение приобретают активированный макрофаг и естественный киллер, осуществляющие антителозависимую клеточно-опосредованную цитотоксичность, а также gadeТ-лимфоцит.

Кроме перечисленных, на внедрившиеся бактерии воздействует весь арсенал факторов неспецифической резистентности. Среди них важная роль в борьбе с грамположительными микробами принадлежит лизоциму и белкам острой фазы (С-реактивному и маннозосвя-зывающему протеинам).

Напряженность специфического антибак­териального иммунитета оценивают в сероло­гических тестах по титру или динамике титра специфических антител, а также состоянию клеточной иммунореактивности (например, по результатам кожно-аллергической пробы).

12.2.2. Особенности противовирусного иммунитета

Иммунная защита макроорганизма при ви­русных инфекциях имеет особенности, обус­ловленные двумя формами существования вируса: внеклеточной и внутриклеточной.


Основными факторами, обеспечивающими противовирусный иммунитет, являются спе­цифические антитела, Т-киллеры, естествен­ные киллеры, интерферон и сывороточные ингибиторы вирусных частиц.

Специфические противовирусные антитела способны взаимодействовать только с внекле­точным вирусом, внутриклеточные структуры прижизненно для них недоступны. Антитела нейтрализуют вирусную частицу, препятствуя ее адсорбции на клетке-мишени, инфици­рованию и генерализации процесса, а также связывают вирусные белки и нуклеиновые кислоты, которые попадают в межклеточ­ную среду и секреты после разрушения за­раженных вирусами клеток. Образовавшиеся иммунные комплексы элиминируются пу­тем иммунного фагоцитоза. Специфическое связывание антител с вирусными белками, экспрессированными на ЦПМ инфициро­ванных клеток, индуцирует цитотоксическую активность естественных киллеров (см. гл. 11, разд. 11.3.1).

Клетки, инфицированные вирусом и при­ступившие к его репликации, экспрессиру-ют вирусные белки на цитоплазматической мембране в составе молекул антигенов гис-тосовместимости — МНС I класса (см. гл. 10, разд. 10.1.4.2). Это является сигналом для активации Т-киллеров, которые распознают зараженные вирусом клетки и уничтожают их (см. гл. 11, разд. 11.3.2).

Мощным противовирусным действием об­ладает интерферон (см. гл. 9, разд. 9.2.3.5). Он не действует непосредственно на внутрикле­точный вирус, а связывается с рецептором на мембране клетки и индуцирует ферментные системы, подавляющие в ней все биосинтети­ческие процессы.

Сывороточные ингибиторы неспецифичес­ки связываются с вирусной частицей и ней­трализуют ее, препятствуя тем самым адсорб­ции вируса на клетках-мишенях.

Напряженность противовирусного имму­нитета оценивают-преимущественно в се­рологических тестах — по нарастанию титра специфических антител в парных сыворот­ках в процессе болезни. Иногда определяют концентрацию интерферона в сыворотке крови.


12.2.3. Особенности противогрибкового

иммунитета

Антигены грибов имеют относительно низ­кую иммуногенность: они практически не ин­дуцируют антителообразование (титры специ­фических антител остаются низкими), но сти­мулируют клеточное звено иммунитета. Между тем, основными действующими факторами противогрибкового иммунитета являются акти­вированные макрофаги, которые осуществляют антителозависимую клеточно-опосредованную цитотоксичность грибов.

При микозах наблюдается аллергизация макроорганизма. Кожные и глубокие микозы сопровождаются, как правило, ГЗТ. Грибковые поражения слизистых дыхательных и моче­половых путей вызывают аллергизацию по типу ГНТ (реакция I типа). Напряженность противогрибкового иммунитета оценивается по результатам кожно-аллергических проб с грибковыми аллергенами.

12.2.4. Особенности иммунитета
при протозойных инвазиях

Противопаразитарный иммунитет изучен слабо. Известно, что паразитарная инвазия сопровождается формированием в макроор­ганизме гуморального и клеточного имму­нитета. В крови определяются специфичес­кие антитела классов М и G, которые чаще всего не обладают протективным действием. Однако они активируют антителозависимую клеточно-опосредованную цитотоксичность с участием макрофагов, а в случае внутрик­леточного паразитирования — естественных киллеров и gadeТ-лимфоцитов. Паразитарные инвазии сопровождаются аллергизацией мак­роорганизма — отмечается усиление ГЗТ на протозойные антигены.

Характер противопаразитарного иммуните­та определяется структурно-функциональны­ми особенностями паразита и его жизненного цикла при инвазии макроорганизма. Многие паразиты обладают высокой антигенной изменчивостью, что позволяет им избегать действия факторов иммунитета. Например, каждой стадии развития малярийного плаз­модия соответствуют свои специфические ан­тигены.


Напряженность противопаразитарного иммунитета оценивается в серологических тестах по титру специфических антител и в кожно-аллергических пробах с протозойным антигеном.

12.2.5. Особенности противоглистного
иммунитета

Ведущую роль в осуществлении иммунной защиты макроорганизма от глистной инвазии играют эозинофилы, которые осуществляют антителозависимую клеточно-опосредован-ную цитотоксичность. Эти клетки «распозна­ют» паразитов, «отмеченных» специфически­ми IgE или IgA. Активированный эозинофил, дегранулируясь, выделяет ряд токсических субстанций (ферменты, белковые токсины), губительно действующих на гельминты.

Антигены гельминта, связываясь также с рецепторными комплексами тучных клеток слизистой оболочки, вызывают их деграну-ляцию. Экскретированные биологически ак­тивные соединения вызывают интенсивную перистальтику, удаляющую паразита или его останки из просвета кишки.

Эозинофилы и тучные клетки синтезируют цитокины и липидные медиаторы, потен­цирующие воспалительную реакцию в месте внедрения гельминта. Глистная инвазия со­провождается аллергизацией, в основном, по типу ГЗТ.

12.2.6. Трансплантационный иммунитет
Трансплантационным иммунитетом назы­
вают иммунную реакцию макроорганизма,
направленную против пересаженной в него
чужеродной ткани (трансплантата). Знание
механизмов трансплантационного иммуните­
та необходимо для решения одной из важней­
ших проблем современной медицины — пе­
ресадки органов и тканей. Многолетний опыт
показал, что успех операции по пересадке
чужеродных органов и тканей в подавляющем
большинстве случаев зависит от иммунологи­
ческой совместимости тканей донора и реци­
пиента.

Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их соста­ве содержатся генетически чужеродные для организма антигены. Эти антигены, полу-


чившие название трансплантационных или антигенов гистосовместимости (см. гл. 10, разд. 10.1.4.2), наиболее полно представлены на ЦПМ клеток.

Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости — такое возможно лишь для однояйцовых близнецов. Выраженность реакции отторжения во мно­гом зависит от степени чужеродности, объема трансплантируемого материала и состояния иммунореактивности реципиента.

При контакте с чужеродными трансплан­тационными антигенами организм реагирует факторами клеточного и гуморального зве­ньев иммунитета. Основным фактором кле­точного трансплантационного иммунитета являются Т-киллеры. Эти клетки после сен­сибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточно-опосредо-ванную цитотоксичность.

Специфические антитела, которые образу­ются на чужеродные антигены (гемагглюти-нины, гемолизины, лейкотоксины, цитоток-сины), имеют важное значение в формирова­нии трансплантационного иммунитета. Они запускают антитело-опосредованный цитолиз трансплантата (комплемент-опосредованный и антителозависимая клеточно-опосредован-ная цитотоксичность).

Возможен адоптивный перенос трансплан­тационного иммунитета с помощью активи­рованных лимфоцитов или со специфической антисывороткой от сенсибилизированной особи интактному макроорганизму.

Механизм иммунного отторжения переса­женных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетент-ных клеток (лимфоидная инфильтрация), в том числе Т-киллеров. Во второй фазе про­исходит деструкция клеток трансплантата Т-киллерами, активируются макрофагальное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспале­ние, тромбоз кровеносных сосудов, наруша­ется питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.


В процессе реакции отторжения формиру­ется клон Т- и В-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный от­вет, который протекает очень бурно и быстро заканчивается отторжением трансплантата.

С клинической точки зрения выделяют ос­трое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам.

Острое отторжение — это «нормальная» ре­акция иммунной системы по механизму пер­вичного ответа, которая развивается в течение первых недель или месяцев после трансплан­тации в отсутствие иммуносупрессивной тера­пии. В ее основе лежит комплекс всевозмож­ных цитолитических реакций, как с участием антител, так и независимых от них.

Отсроченное отторжение имеет тот же ме­ханизм, что и острое. Возникает через не­сколько лет после операции у пациентов, получавших иммуносупрессивную терапию.

Сверхострое отторжение, или криз оттор­жения, развивается в течение первых суток после трансплантации у пациентов, сенсиби­лизированных к антигенам донора, по меха­низму вторичного иммунного ответа. Основу составляет антительная реакция: специфичес­кие антитела связываются с антигенами эн­дотелия сосудов трансплантата и поражают клетки, активируя систему комплемента по классическому пути. Параллельно иниции­руется иммунное воспаление и свертываю­щая система крови. Быстрый тромбоз сосудов трансплантата вызывает его острую ишемию и ускоряет некротизацию пересаженных тканей.

Следовательно, при пересадке органов и тканей во избежание иммунологического от­торжения трансплантата необходимо прово­дить тщательный подбор донора и реципиен­та по антигенам гистосовместимости.

12.2.7. Иммунитет против новообразований В сложноорганизованном организме, на­ряду с нормальными физиологическими про­цессами, направленными на поддержание гомеостаза, с определенной частотой проис­ходят и дезинтегрирующие события, обуслов­ленные ошибками и старением сложноорга-низованной биологической системы. В част-


ности, появляются мутантные и опухолевые клетки.

Мутантные клетки возникают в резуль­тате нелетального действия химических, физических и биологических канцероге­нов. К последним относятся разнообразные инфекционные агенты — облигатные внут­риклеточные паразиты, и, в первую очередь, вирусы. Мутантные клетки отличаются от нормальных метаболическими процессами и антигенным составом, в частности, имеют измененные антигены гистосовместимости. Поэтому они активируют гуморальное и кле­точное звенья иммунитета, осуществляющие надзорную функцию. Важную роль в этом процессе играют специфические антитела (запускают комплемент-опосредованную ре­акцию и антителозависимую клеточно-опос-редованную цитотоксичность) и Т-киллеры, осуществляющие антителонезависимую кле-точно-опосредованную цитотоксичность.

Противоопухолевый иммунитет имеет свои осо­бенности, связанные с низкой иммуногеннос-тью раковых клеток. Эти клетки практически не отличаются от нормальных, ингактных морфо­логических элементов собственного организма. Специфический антигенный «репертуар» опухо­левых клеток также скуден. В число опухольассо-циированных антигенов (см. гл. 10, разд. 10.1.4.3) входит группа раково-эмбриональных антигенов, продукты онкогенов, некоторые вирусные анти­гены и гиперэкспрессируемые нормальные бел­ки. Слабому иммунологическому распознаванию опухолевых клеток способствует отсутствие вос­палительной реакции в месте онкогенеза, а также их иммуносупрессивная активность — биосинтез ряда «негативных» цитокинов be-ТФР и др.), а также экранирование раковых клеток противо­опухолевыми антителами.

Механизм противоопухолевого иммунитета до сих пор слабо изучен. Считается, что ос­новную роль в нем играют активированные макрофаги; определенное значение имеют также естественные киллеры. Защитная фун­кция гуморального иммунитета во многом спорная — специфические антитела могут экранировать антигены опухолевых клеток, не вызывая их цитолиза.

Вместе с тем, в последнее время получила распространение иммунодиагностика рака,


которая основана на определении в сыворот­ке крови раковоэмбриональных и опухоль-ассоциированных антигенов. Таким путем в настоящее время удается диагностировать некоторые формы рака печени, желудка, ки­шечника и др.

Между состоянием иммунной защиты и развитием новообразований существует тес­ная связь. Об этом свидетельствует повы­шенная заболеваемость злокачественными новообразованиями индивидуумов с имму-нодефицитами и престарелых в связи с по­нижением активности иммунной системы. Иммуносупрессивная химиотерапия также нередко сопровождается пролиферативны-ми процессами. Поэтому в лечении опухо­лей нашли применение иммуномодуляторы (интерлейкины, интерфероны), а также адъ-юванты (мурамилдипептиды, вакцина БЦЖ и др.).

12.2.8. Иммунология беременности

Беременность напрямую сопряжена с фе­номеном иммунологической толерантности. В организме беременной формируется це­лый комплекс факторов, обеспечивающих ареактивность иммунной системы матери к гетероантигенам плода. Во-первых, синцити-отрофобласт плаценты «невидим» для рецеп­торов иммунокомпетентных клеток. Он не экспрессирует классические молекулы гис-тосовметимости, а только неполиморфные, трудно распознаваемые. Во-вторых, синцити-отрофобласт синтезирует иммуносупрессор-ные цитокины (ИЛ-4, -10, (3-ТФР). В-третьих, в децидуальной оболочке беременной матки располагаются CD16~CD56MHoro естественные киллеры (см. гл. 11, разд. 11.3.2), которые устраняют активированные аллоантигена-ми плода лимфоциты путем индукции у них апоптоза.

Механизмы иммунологической толеран­тности во время беременности чрезвычай­но активны. Известно, например, что сам­ки животных в этот период не отторгают трансплантат отца ее эмбриона. Однако после родоразрешения (или абортирования плода) толерантность быстро угасает, а надзорная функция иммунной системы быстро восста­навливается, и трансплантат отторгается.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.