Пиши Дома Нужные Работы

Обратная связь

Иммунобиологические препараты

14.2.1. Общая характеристика и классификация ИБП

Иммунобиологические препараты имеют сложный состав, отличаются по своей приро-


де, способам получения и применения, целе­вому назначению. Однако, как указывалось выше, их объединяет то, что они действуют или на иммунную систему, или через иммун­ную систему, или же механизм их действия основан на иммунологических принципах.

Действующим началом в ИБП являются или антигены, полученные тем или иным способом, или антитела, или микробные клетки и их дериваты, или биологически ак­тивные вещества типа иммуноцитокинов, иммунокомпетентные клетки и другие им-мунореагенты. Кроме действующего начала, ИБП могут, в зависимости от их природы и характера, включать стабилизаторы, адъ-юванты, консерванты и другие субстанции, улучшающие качество препарата (например, витамины, адаптогены).

ИБП могут применяться парентерально, перорально, аэрозольно или другими спосо­бами, поэтому им придают соответствующую лекарственную форму: стерильные растворы и суспензии или лиофилизированные раство­римые порошки для инъекций, таблетки, све­чи, аэрозоли и т. д. Для каждого ИБП установ­лены строго регламентированные дозировки и схемы применения, показания и противо­показания, а также побочные эффекты.

В настоящее время выделяют 5 групп имму­нобиологических препаратов (А. А. Воробьев):

первая группа — ИБП, получаемые из жи­вых или убитых микробов (бактерий, вирусов, грибов) или микробных продуктов и исполь­зуемые для специфической профилактики или терапии. К ним относятся живые и инак-тивированные корпускулярные вакцины, суб­клеточные вакцины из микробных продуктов, анатоксины, бактериофаги, пробиотики;



вторая группа — ИБП на основе специфи­ческих антител. К ним относятся иммуногло­булины, иммунные сыворотки, иммуноток-сины, антитела-ферменты (абзимы), рецеп-торные антитела, мини-антитела;

третья группа — иммуномодуляторы для иммунокоррекции, лечения и профилактики инфекционных и неинфекционных болезней, иммунодефицитов. Сюда относятся экзоген­ные иммуномодуляторы (адъюванты, некото­рые антибиотики, антиметаболиты, гормоны) и эндогенные иммуномодуляторы (интерлей-


кины, интерфероны, пептиды тимуса, миело-пептиды и др.);

четвертая группа — адаптогены — сложные химические вещества растительного, живот­ного или иного происхождения, обладающие широким спектром биологической активнос­ти, в том числе действием на иммунную сис­тему. К ним относятся, например, экстракты женьшеня, элеутерококка и других растений, тканевые лизаты, различные биологически активные пищевые добавки (липиды, полиса­хариды, витамины, микроэлементы и другие микронутриенты);

пятая группа — диагностические препараты и системы для специфической и неспецифичес­кой диагностики инфекционных и неинфек­ционных болезней, с помощью которых можно обнаруживать антигены, антитела, ферменты, продукты метаболизма, биологически актив­ные пептиды, чужеродные клетки и т. д.

Разработкой и изучением ИБП занимается раздел иммунологии — иммунобиотехнология.

Ниже дана характеристика этих пяти групп ИБП.

14.2.2. Вакцины

Термин «вакцина» произошел от француз­ского vacca — корова. Его ввел Л. Пастер в честь Дженнера, применившего вирус коро­вьей оспы для иммунизации людей против натуральной оспы человека.

Вакцины используют, в основном, для активной специфической профилактики, а иногда и для лечения инфекционных болез­ней. Действующим началом в вакцинах яв­ляется специфический антиген, в качестве которого используют:

—живые ослабленные микробы, лишенные патогенности, но сохранившие антигенные свойства;

—инактивированные тем или иным спосо­бом цельные микробные клетки или вирус­ные частицы;

 

— субклеточные антигенные комплексы (протективные антигены), выделенные из микробов;

— микробные метаболиты (токсины-ана­токсины), играющие основную роль в патоге­незе инфекций и обладающие специфичес­кой антигенностью;


— химически или биологически синтезиро­ванные молекулярные антигены, в том чис­ле полученные с помощью рекомбинантных штаммов микробов, аналогичные природным антигенам.

Вакцина представляет собой сложный ИБП, в состав которого наряду со специфическим антигеном, исходя из природы и лекарствен­ной формы препарата, включают стабилиза­торы, консерванты, адъюванты. В качестве стабилизаторов, предохраняющих антиген от разрушения, например, при производстве или при длительном хранении вакцины, исполь­зуют гомологичные белки (альбумин челове­ка), сахарозо-агар-желатину и др. В качестве консервантов, не допускающих размножения случайно попавшей в препарат микрофлоры, применяют мертиолят (1:10 000), формалин и другие антимикробные препараты. Для повы­шения иммуногенности антигена в некоторые вакцины добавляют адъюванты.

В табл. 14.1 приведена классификация вак­цин в зависимости от их природы, характера и способа получения (А. А. Воробьев).

14.2.2.1. Живые вакцины

Живые вакцины представляют собой пре­параты, в которых действующим началом яв­ляются ослабленные тем или иным способом, потерявшие вирулентность, но сохранившие специфическую антигенность штаммы пато­генных микробов (бактерий, вирусов), полу­чившие название аттенуированных штаммов. Аттенуация (ослабление) возможна путем длительного воздействия на штамм химичес­ких (мутагены) или физических (температу­ра, радиация) факторов или же длительные пассажи через организм невосприимчивых животных или другие биообъекты (эмбрионы


птиц, культуры клеток). В результате таких воздействий на культуры патогенных бакте­рий или вирусов селекционируются штаммы со сниженной вирулентностью, но способные при введении в организм человека размно­жаться и вызывать вакцинный процесс (со­здавать специфический иммунитет), не вызы­вая инфекционного заболевания.

Аттенуацию патогенных бактерий с це­лью получения вакцинных штаммов впервые предложил Л. Пастер на примере вируса бе­шенства, холеры кур, бацилл сибирской язвы. В настоящее время этот способ широко ис­пользуется в вакцинологии. В качестве живых вакцин можно использовать дивергентные штаммы, т. е. непатогенные для человека мик­робы, имеющие общие протективные антиге­ны с патогенными для человека возбудителя­ми инфекционных болезней. Классическим примером дивергентных живых вакцин явля­ется вакцина против натуральной оспы чело­века, в которой используется непатогенный для человека вирус оспы коров. Эти два ви­руса имеют общий протективный антиген. К дивергентным вакцинам следует также отнес­ти БЦЖ — вакцину, в которой используются родственные в антигенном отношении мико-бактерии бычьего типа.

В последние годы успешно решается проблема получения живых вакцин генно-инженерным способом. Принцип получения таких вакцин сводится к созданию непатогенных для человека безопасных рекомбинантных штаммов, несу­щих гены протективных антигенов патогенных микробов и способных при введении в организм человека размножаться, синтезировать специ­фический антиген и, таким образом, создавать иммунитет к патогенному возбудителю. Такие вакцины называют векторными. В качестве век-


торов для создания рекомбинантных штаммов чаще используют вирус осповакцины, непато­генные штаммы сальмонелл и другие микробы. Уже получены экспериментально и проходят клинические испытания рекомбинантные штам­мы осповакцины и сальмонелл, продуцирующие антигены вируса гепатита В, клещевого энцефа­лита, ВИЧ и других патогенных микробов.

Живые вакцины независимо от того, ка­кие штаммы в них включены (аттенуирован-ные, дивергентные или векторные), получают путем культивирования штаммов на искус­ственных питательных средах (бактерии), в культурах клеток или в куриных эмбрионах (вирусы), и из полученных чистых культур вакцинных штаммов конструируют вакцин­ный препарат. В живую вакцину, как прави­ло, включают стабилизатор, не добавляют консервант, вакцину подвергают лиофильно-му высушиванию. Дозируют вакцину числом живых бактерий или вирусов в зависимости от способа применения: накожно, подкожно, внутримышечно, перорально. Обычно живые вакцины применяют однократно с периоди­ческими ревакцинациями.

14.2.2.2. Инактивированные (убитые) вакцины

Инактивированные вакцины в качестве действующего начала включают убитые хи­мическим или физическим методом культу­ры патогенных бактерий или вирусов (цель-ноклеточные, цельновирионные вакцины) или же извлеченные из патогенных микробов (иногда вакцинных штаммов) комплексы, содержащие в своем составе протективные антигены (субклеточные, субвирионные вак­цины). Для инактивации бактерий и вирусов применяют формальдегид, спирт, фенол или температурное воздействие, ультрафиолето­вое облучение, ионизирующую радиацию.

Для выделения из бактерий и вирусов анти­генных комплексов (гликопротеинов, ЛПС, белков) применяют трихлоруксусную кислоту, фенол, ферменты, изоэлектрическое осажде­ние, ультрацентрифугирование, ультрафиль­трацию, хроматографию и другие физические и химические методы.

Получают инактивированные вакцины путем выращивания на искусственных питательных


средах патогенных бактерий или вирусов, ко­торые затем подвергают инактивации, разру­шению (в случае необходимости), выделению антигенных комплексов, очистке, конструи­рованию в виде жидкого или лиофильно вы­сушенного препарата. В препарат обязательно добавляют консервант, иногда — адъюванты.

Дозируют вакцину в антигенных единицах; применяют, как правило, подкожно, внут­римышечно в виде нескольких инъекций на курс вакцинации.

14.2.2.3. Молекулярные вакцины

В молекулярных вакцинах антиген находится в молекулярной форме или же в виде фрагмен­тов его молекул, определяющих специфичность антигенности, т. е. в виде эпитопов, детерми­нант. Протективный антиген в виде молекул можно получить биологическим синтезом в процессе культивирования природных па­тогенных микробов, например, токсигенных бактерий — дифтерии, столбняка, ботулизма и др. Синтезируемый этими бактериями ток­син в молекулярной форме превращают за­тем в анатоксин, т. е. нетоксичные молекулы, сохраняющие специфическую антигенность и иммуногенность. Развитие генной инженерии, создание рекомбинантных бактерий и вирусов, способных синтезировать молекулы несвойс­твенных им антигенов, открыли возможности получения молекулярных антигенов в процессе культивирования рекомбинантных штаммов. Показано, что таким образом можно получить антигены ВИЧ, вирусных гепатитов, малярии, кори, полиомиелита, гриппа, туляремии, бру­целлеза, сифилиса и других возбудителей бо­лезней. В медицинской практике уже исполь­зуется молекулярная вакцина против гепатита В, полученная из антигена вируса, продуциру­емого рекомбинантным штаммом дрожжей. В будущем способ получения молекулярных вак­цин из антигенов, синтезируемых рекомбинан-тными штаммами, будет развиваться быстрыми темпами. Наконец, антиген в молекулярной форме, особенно детерминанты антигена, мож­но получить химическим синтезом, после рас­шифровки его структуры. Этим способом уже синтезированы детерминанты многих бактерий и вирусов, в том числе ВИЧ. Однако химичес­кий синтез антигенов более трудоемок и имеет


ограниченные возможности по сравнению с биосинтезом. Из полученных биосинтезом или химическим синтезом антигенов или его эпито-пов конструируют молекулярные вакцины.

14.2.2.4. Анатоксины (токсоиды)

Примером молекулярных вакцин являются анатоксины: дифтерийный, столбнячный, бо-тулинический (типов А, В, Е), гангренозный (перфрингенс, нови и др.), стафилококко­вый, холерный.

Принцип получения анатоксинов состоит в том, что образующийся при культивировании соответствующих бактерий токсин в молеку­лярном виде превращают в нетоксичную, но сохраняющую специфическую антигенность форму — анатоксин путем воздействия 0,4% формальдегида и тепла (37 °С) в течение 3—4 недель. Подученный анатоксин подвергают очистке и концентрированию физическими и химическими метлами для удаления балласт-

ных веществ, состоящих из продуктов бактерий и питательной среды, на которой они выраши-I вались. К очищенному и концентрированному анатоксину для повышения его иммуноген-ности добавляют адъюванты, обычно сорбен­ты — гели Аl(OН), и Аl(РO4). Полученные та­ким образом препараты назвали очищенными сорбированными анатоксинами.

Дозируют анатоксины в антигенных еди­ницах: единицах связывания (ЕС) анатоксина специфическим антитоксином или в едини­цах флокуляции (Lf). Анатоксины относятся к числу наиболее эффективных профилактичес­ких препаратов. Благодаря иммунизации диф­терийным и столбнячными анатоксинами рез­ко снижена заболеваемость и ликвидированы эпидемии дифтерии и столбняка. Очищенные сорбированные анатоксины применяют под­кожно или внутримышечно по схеме, предус­мотренной календарем прививок.

14.2.2.5. Синтетические вакцины

Молекулы антигенов или их эпитопы сами по себе обладают низкой иммуногенностью по-видимому в связи с деструкцией их в ор­ганизме ферментами, а также недостаточно активным процессом их адгезии иммуноком-


петентными клетками, из-за относительно низкой молекулярной массы антигенов. В связи с этим ведутся поиски повышения им-муногеннооти молекулярных антигенов пу­тем искусственного укрупнения их молекул за счет химической или физико-химической связи («сшивки») антигена или его детерми­нанты с полимерными крупномолекулярны­ми безвредными для организма носителями (типа поливинилпирролидона и других поли­меров), который бы играл роль «шлеппера» и роль адъюванта.

Таким образом, искусственно Создается комплекс, состоящий из антигена или его детерминанты + полимерный носитель + адъ-ювант. Часто носитель совмещает в себе роль адъюванта. Благодаря такой композиции ти-мусзависимые антигены можно превратить в тимуснезависимые; такие антигены будут длительно сохраняться в организме и легче адгезироваться иммунокомпетентными клет­ками. Вакцины, созданные на таком при­нципе, получили название синтетических. Проблема создания синтетических вакцин довольно сложная, но она активно разра­батывается, особенно в нашей стране (Р. В. Петров, Р. М. Хаитов). Уже создана вакцина против гриппа на полиоксидонии, а также ряд других экспериментальных вакцин.

14.2.2.6. Адъюванты

Как было сказано выше, для усиления им-муногенности вакцин применяют адъюванты (от лат. adjuvant— помощник). В качестве адъ-ювантов используют минеральные сорбенты (гели гидрата окиси и фосфата аммония), полимерные вещества, сложные химические соединения (ЛПС, белково-липополисаха-ридные комплексы, мурамилдипептид и его производные и др.); бактерии и компоненты бактерий, например вытяжки БЦЖ, из ко­торых готовят адъювант Фрейнда; инакти-вированные коклюшные бактерии, липиды и эмульгаторы (ланолин, арлацел); вещес­тва, вызывающие воспалительную реакцию (сапонин, скипидер). Как видно, все адъю­ванты являются чужеродными для организма веществами, имеют различный химический состав и происхождение; сходство их состоит в том, что все они способны усиливать им-


муногенность антигена. Механизм действия адъювантов сложный. Они действуют как на антиген, так и на организм (А. А. Воробьев). Действие на антиген сводится к укрупнению его молекулы (сорбция, химическая связь с полимерным носителем), т. е. превращению растворимых антигенов в корпускулярные. В результате антиген лучше захватывается и активнее представляется фагоцитирующими и другими иммунокомпетентными клетками, т. е. превращается из тимусзависимого в ти-муснезависимый антиген. Кроме того, адъю-ванты вызывают на месте инъекции воспали­тельную реакцию с образованием фиброзной капсулы, в результате чего антиген длительно сохраняется, депонируется на месте инъек­ции и, поступая из «депо», длительное время действует по принципу суммации антигенных раздражений (ревакцинирующий эффект). В связи с этим адъювантные вакцины назы­вают депонированными. Адъюванты также непосредственно активируют пролиферацию клеток Т-, В-, А-систем иммунитета и уси­ливают синтез защитных белков организма. Адъюванты усиливают иммуногенность ан­тигенов в несколько раз, а такие растворимые молекулярные белковые антигены, как диф­терийный, столбнячный, ботулинический анатоксины, — до ста раз (А. А. Воробьев).

14.2.2.7 Ассоциированные вакцины

С целью сокращения числа вакцин и числа инъекций при проведении массовой вакци-нопрофилактики уже разработаны и ведутся дальнейшие работы по созданию ассоцииро­ванных вакцин, т. е. препаратов, включающих несколько разнородных антигенов и позво­ляющих проводить иммунизацию против не­скольких инфекций одновременно. Создание таких вакцин научно обоснованно, так как им­мунная система может одновременно отвечать на десятки различных антигенов. Основная задача при создании ассоциированных вак­цин состоит в сбалансированности входя­щих в ее состав антигенов, чтобы не было их взаимной конкуренции и чтобы препарат не вызывал повышенных поствакцинальных ре­акций. В состав ассоциированных препаратов могут входить как инактивированные, так и живые вакцины. Если в препарат входят од-


нородные антигены, такую ассоциированную вакцину называют поливакциной. Примером может служить живая полиомиелитная поли­вакцина, в которую входят аттенуированные штаммы вируса полиомиелита I, II, IIIтипа, или полианатоксин, куда входят анатоксины против столбняка, газовой гангрены и боту­лизма.

Если ассоциированный препарат состоит из разнородных антигенов, то его целесооб­разно называть комбинированной вакциной. Комбинированной вакциной является, на­пример, АКДС-вакцина, состоящая из ина-ктивированной корпускулярной коклюшной вакцины, дифтерийного и столбнячного ана­токсинов. Возможна также комбинированная иммунизация, когда одномоментно раздельно вводят несколько вакцин в различные участки тела — например против оспы (накожно) и чумы (подкожно). К комбинированной вак­цинации прибегают в сложной противоэпи­демической обстановке (К. Г. Гапочко и др.).

14.2.2.8. Массовые способы вакцинации

Успех вакцинопрофилактики зависит не только от качества вакцины, но и от процента и быстроты охвата населения или групп риска прививками. Производительность, т. е. число вакцинированных людей в один час бригадой вакцинаторов, существенно зависит от спо­соба введения препарата. Так, при накожном (скарификационном) способе одна бригада за час может провакцинировать примерно 20 че­ловек, при подкожном шприцевом способе — 30—40 человек, а с помощью безыгольного инъектора — порядка 1200 человек за час.

В вакцинопрофилактике применяется не­сколько способов введения вакцин, позволяю­щих в короткие сроки вакцинировать большое число людей, т. е. обладающих большой про­изводительностью. Эти способы получили на­звание массовых способов вакцинации (А. А. Воробьев, В. А. Лебединский). К ним отно­сятся безыгольная инъекция, пероральный и аэрозольный способы введения вакцин.

Безыгольный способоснован на введении вакцин с помощью безыгольных инъекторов пистолетного типа, в которых, благодаря вы­сокому давлению, создаваемому в приборе с помощью гидравлики или инертного газа,


формируется струя жидкой вакцины проника­ющая в необходимой объемной дозе (0,5— 1 мл) через кожу на заданную глубину (накожно, подкожно, внутримышечно). Разработано множество конструкций безыгольных инъек-торов. Такие инъекторы позволяют при хоро­шей организации прививочной кампании за один час провакцинировать до 1200 человек.

Пероральный способявляется самым быст­рым, щадящим, привлекательным и адекват­ным, так как позволяет без насильственного нарушения наружных покровов, безболез­ненно прививать огромное число людей (до 1500 человек/ч одной бригадой) в любой об­становке (в поликлинике, дома, на вокзале, в поездах, самолетах и др.), без соблюдения правил асептики, без расходования медицин­ских материалов (спирт, йод, шприцы, вата), не требует электроэнергии и приспособлен­ных помещений.

К сожалению, для перорального способа вакцинации пока разработано лишь ограни­ченное число вакцин (живая полиомиелитная, оспенная, чумная, противоэнцефалитная вак­цины), хотя предпосылки для создания пе-роральных вакцин против других инфекций (корь, грипп, бруцеллез, туляремия и др.) име­ются. Пероральные вакцины могут иметь раз­личную лекарственную форму в зависимости от локализации в желудочно-кишечном тракте «входных ворот» для антигена: оральные (жид­кие и таблетированные, в виде конфет-драже), энтеральные (таблетированные с кислотоза-щитным покрытием, в желатиновых капсулах) или орально-энтеральные (таблетированные). В последние годы внимание привлекают вак­цины в виде суппозиториев для перректальной и первагинальной аппликации. Пероральные и перректальные вакцины обеспечивают не только местный иммунитет слизистых обо­лочек (мукозальный иммунитет), но и имму­нитет всего организма; пероральные вакцины иногда называют мукозальными.

Аэрозольный способоснован на введении вакцины через дыхательные пути в виде жид­ких или сухих аэрозолей. Для этого в за­крытых помещениях, в которых размещаются вакцинируемые, с помощью распылителей создают аэрозоль вакцины в расчетных дози­ровках и выдерживают определенную экспо-


зицию. Аэрозоль вакцины проникает через верхние дыхательные пути во внутреннюю среду организма, обеспечивая как местный, так и общий иммунитет.

Производительность аэрозольного способа не превышает 600—800 человекочас на одну бригаду вакцинаторов. К сожалению, этот метод сложен: требуются распиливающие ус­тройства, электроэнергия; не обеспечивает­ся равномерность дозировки вакцины для каждого вакцинируемого; возможно распро­странение вакцинного препарата за пределы помещений; после каждого сеанса требуется обработка помещений с целью удаления осев­ших аэрозолей вакцины и т. д. В связи с пере­численным аэрозольная вакцинация является резервным способом — на случай сложной противоэпидемической обстановки.

В вакцинопрофилактике иногда использу­ют интраназальный способ аппликации жи­вых вакцин, например против гриппа, кори и других инфекций.

14.2.2.9. Условия эффективности применения вакцин

Эффективность вакцинации зависит от трех факторов: а) качества, т. е. иммуноген-ности, вакцины; б) состояния организма вак­цинируемого; в) схемы и способа применения вакцины.

Качество вакцины, т. е. ее иммунизирую­щий эффект, побочные нежелательные реак­ции, которые она может вызывать, зависят от природы, т. е. иммуногенных свойств антиге­на, характера иммунитета (клеточный, гумо­ральный и т. д.), дозировки антигена. Между дозой антигена и напряженностью вызывае­мого иммунитета существует математическая зависимость (см. раздел 10.1.2.2.)

установленная А. В. Марковичем и А. А. Воробьевым и названная уравнением анти-генности:

LgH = А + BlgД,

где Н — напряженность иммунитета; Д — доза антигена; А — коэффициент, характеризующий качество (иммуногенность) единицы антигена; В — коэффициент, характеризующий иммуно-реактивность (отвечаемость) организма.


По чувствительности к каждому антигену все люди существенно (в десятки и даже со­тни раз) отличаются между собой, причем это различие приближается к кривой нормального распределения. Поэтому при создании любой вакцины в качестве иммунизирующей дози­ровки подбирают дозу антигена, обеспечива­ющую при определенной схеме применения препарата развитие иммунитета не менее чем у 95 % привитых. Обычно это достигается при 2—3-кратном введении вакцины. При такой схеме вакцинации максимально использу­ется ревакцинирующий эффект. Безусловно, на эффективность вакцинации существенное влияние оказывает иммунореактивность вак­цинируемого, т. е. его способность отвечать на антиген, которая зависит от состояния иммун­ной системы и физиологического состояния организма. Особенно влияет на эффективность вакцинации наличие первичных и вторичных иммунодефицитов, и это естественно, так как иммунная система в этих случаях не в состоянии отреагировать полноценной защитой. Однако имеет значение и общефизиологическое со­стояние организма, которое оказывает влияние на общую и иммунологическую реактивность последнего. Известно, что на общую реактив­ность организма оказывают влияние полноцен­ность питания (особенно белкового), наличие витаминов (особенно А и С), экологические и социальные условия жизни, профессиональные вредности, соматические и инфекционные бо­лезни и даже климатогеографические условия. Понятно, что при неблагоприятных условиях, отражающихся на общей физиологической ре­активности организма, способность иммунной системы отвечать полноценной реакцией на ан­тиген существенно снижена, но возрастает риск увеличения нежелательных поствакцинальных осложнений. Поэтому существует перечень не только показаний, но и противопоказаний к вакцинации.

Иммунологическую эффективность вакцин предварительно оценивают в эксперименте, а окончательно — в эпидопыте. В экспери­ментальных условиях иммуногенность опре­деляют по коэффициенту защиты на чувс­твительных к антигену и, соответственно, к патогенному микробу модельных животных (белые мыши, морские свинки, кролики, обе-


зьяны). Определяют процент заболевших или павших животных в группе иммунизирован­ных вакциной и в группе контрольных не-иммунизированных животных (при введении им определенной дозы вирулентной культуры или токсина).

Коэффициент защиты представляет собой отношение процента павших или заболевших животных в опытной и контрольной группах. Например, если в опытной группе погибло 10 % животных, а в контрольной — 90 %, то коэффициент защиты равен: 90/10=9.

В эпидопыте устанавливают коэффици­ент эффективности вакцинации, определяя в больших коллективах людей соотношение числа или процента заболевших в группе, подвергшейся вакцинации, и в равноценной группе невакцинированных людей. В табл. 14.2 приведены примерные величины коэф­фициента защиты, полученные в экспери­менте для отдельных вакцин.

14.2.2.10. Общая характкристика вакцин, применяемых в практике

Для вакцинопрофилактики в настоящее время применяется примерно 40 вакцин, по­ловина из которых — живые вакцины.

Перечень основных вакцин, их примерная защитная эффективность и авторы, разра­ботавшие вакцины, приведены в табл. 14.2, из которой видно, что вакцины существенно различаются по своей эффективности, иног­да в десятки раз. Однако независимо от этого применение в практике всех вакцин целесо­образно, о чем свидетельствует значительное снижение заболеваемости и смертности среди вакцинированных, что позволяет не только сохранить здоровье и даже жизнь миллионам людей, но и дает большой экономический эффект. Вакцинация является наиболее эф­фективным и экономичным способом борьбы с инфекционной заболеваемостью.

Длительное время шла дискуссия по вопро­су, какие вакцины предпочтительнее — живые или инактивированные. Сравнение этих двух групп вакцин по ряду показателей (иммуно­генность, безвредность, реактогенность, про­стота применения, стандартность, экономич­ность производства и др.) привело к выводу о том, что предпочтительнее та вакцина (будь


то живая или убитая), которая обеспечивает наиболее высокий защитный эффект, дает лучшее результаты по снижению инфекци­онной заболеваемости и не наносит при этом ущерба здоровью вакцинируемым.

Существуют общие требования ко всем вак­цинам. Любой рекомендуемый для вакцина­ции препарат должен быть: иммуногенным, безопасным, нереактогенным, не вызывать аллергических реакций, не обладать терато-генностью, онкогенностью; штаммы, из кото­рых готовят вакцину, должны быть генетичес­ки стабильными, вакцина должна обладать длительным сроком хранения, производство ее должно быть технологичным, а способ применения — по возможности, простым и доступным для массового применения.

14.2.2.11. Показания и противопоказания к вакцинации

Показаниями к вакцинации являются нали­чие или угроза распространения инфекционных заболеваний, а также возникновение эпидемий среди населения. При массовом проведении профилактических прививок должны учиты­ваться противопоказания к вакцинации, так как при введении практически любой вакцины мо­гут быть нежелательные поствакцинальные ос­ложнения улиц с теми или иными отклонения­ми в состоянии здоровья. Противопоказания определены для каждой вакцины в наставлении по ее применению. Общими противопоказани­ями к вакцинации являются:

• острые инфекционные и неинфекцион­ные заболевания;

• аллергические состояния;

• заболевания ЦНС;

• хронические заболевания паренхиматоз­ных органов (печени, почек);

• тяжелые заболевания сердечно-сосудис­той системы;

• выраженные иммунодефицита;

• наличие злокачественных новообразований.

Поствакцинальные реакции в виде крат­ковременного повышения температуры те­ла, местных проявлений (гиперемия, отек на месте инъекции), если они не превышают границу указанных в наставлении по приме­нению вакцины, не являются противопоказа­нием к прививкам.


14.2.2.12. Календарь прививок

В каждой стране, в том числе и в России, действует календарь прививок (утвержден Министерством здравоохранения), в котором регламентируется обоснованное проведение во все возрастные периоды человека вакцинаций против определенных инфекционных болез­ней. В календаре указывается, какими вакци­нами и по какой временной схеме должен-быть привит каждый человек в детском возрасте и во взрослом периоде. Так, в детском возрасте (до 10 лет) каждый человек должен быть при­вит против туберкулеза, кори, полиомиелита, коклюша, дифтерии, столбняка, гепатита В, а в эндемичных районах — по особо опасным забо­леваниям и против этих инфекций.

В России принят Федеральный закон «О вакцинопрофилактике инфекционных заболеваний человека», который определяет права и обязанности граждан и отдельных групп населения в области вакцинопрофи-лактики, а также правовое регулирование го­сударственных органов, учреждений,, долж­ностных лиц и установление их ответствен­ности в области вакцинопрофилактики.

14.2.3. Бактериофаги

Бактериофаги относятся к иммунобиоло­гическим препаратам, созданным на осно­ве вирусов, поражающих бактерии. Находят применение в диагностике, профилактике и терапии многих бактериальных инфекций (брюшной тиф, дизентерия, холера и т.д.). Механизм действия бактериофагов основан на специфичности фагов к размножению в соответствующих бактериях, что ведет к ли­зису клеток. Следовательно, лечение и про­филактика с помощью бактериофагов носят специфический характер, так как направлены на уничтожение (лизис) бактерий. На этом же принципе основаны фагодиагностика, специ­фическая индикация и идентификация бак­терий с помощью фагов (фаготипирование). Бактериофаги применяют наряду с другими ИБП в случае эпидемических вспышек ин­фекционных болезней для предупреждения их распространения, а также для лечения больных с точно установленным диагнозом и фаготипированным возбудителем.


Бактериофаги получают культивированием пораженных фагом бактерий на питательных средах и выделением из культуральной жидкос­ти фильтрата, содержащего фаги. Этот филь­трат подвергают лиофильному высушиванию и таблетированию. Возможно также получе­ние бактериофага в виде суспензий. Активность бактериофага устанавливают путем титрования на соответствующих, чувствительных к фагу, культурах бактерий, выращенных на плотных или жидких питательных средах, и выражают числом частиц фага, содержащихся в 1 мл сус­пензии или в одной таблетке.

Назначают бактериофаги с профилактичес­кой и лечебной целью перорально или местно (например, орошение раневой поверхности в случае стафилококковой или другой раневой инфекции) длительными курсами. Эффект фа­гопрофилактики и фаголечения — умеренный.

14.2.4. Пробиотики

Пробиотики относятся к иммунобиологи­ческим препаратам, содержащим культуру живых непатогенных бактерий — предста­вителей нормальной микрофлоры кишеч­ника человека и предназначенным для кор­рекции, т. е. нормализации, качественного и количественного состава микрофлоры человека в случае их нарушения, т. е. при дисбактериозах.

Пробиотики применяют как с профилакти­ческой, так и с лечебной целью при дисбакте­риозах различной этиологии: при соматических и инфекционных болезнях, при экологических и профессиональных влияниях на организм и его микрофлору, при вторичных иммунодефи-цитах, при нерациональном питании, которые зачастую сопровождаются нарушением микро­флоры, особенно желудочно-кишечного тракта. Поскольку дисбактериозы широко распростра­нены среди населения, так как полиэтиологич-ны, пробиотики относятся к числу препаратов массового применения, производятся в нашей стране в больших количествах и ими постоянно снабжается аптечная сеть.

К наиболее распространенным про-биотикам относятся «Колибактерин», «Бифидумбактерин», «Лактобактерин»,


«Бификол», «Субтилин», в состав которых входят соответственно кишечная палочка, би-фидобактерии, лактобактерин, споры субти-лис или их комбинации.

Препараты представляют собой лиофильно высушенные живые культуры соответствующих микроорганизмов с добавками стабилизаторов и вкусовых веществ и выпускаются в виде по­рошков или таблеток. Дозируются пробиотики по числу живых бактериальных клеток в таблет­ке или в 1 г; одна доза обычно содержит 107-108 живых бактерий.

В настоящее время широкое применение нашли пробиотики в виде молочнокислых продуктов: «Био-кефир», кефир «Бифидок» и другие, содержащие живые бактерии нор­мальной микрофлоры человека.

Учитывая, что пробиотики содержат живые микробные клетки, они должны храниться в щадящих условиях (определенный темпера­турный режим, отсутствие солнечной радиа­ции т. д.).

Пробиотики назначают перорально дли­тельными курсами (от 1 до 6 месяцев) по 2—3 раза в день и, как правило, в сочетании с дру­гими методами лечения.

14.2.5. Иммунобиологические препараты на основе специфических антител

Антитела относятся к числу основных им-мунореагентов, участвующих во многих им­мунологических реакциях, определяющих со­стояние иммунитета организма. Они разнооб­разны по своей структуре и функциям.

В зависимости от природы и свойств анти­генов, к которым они образуются, антитела могут быть антибактериальными, противови­русными, антитоксическими, противоопухо­левыми, антилимфоцитарными, трансплан­тационными, цитотоксическими, рецептор-ными и т. д. В связи с этим на основе антител создано множество иммунобиологических препаратов, применяемых для профилакти­ки, терапии и диагностики как инфекцион­ных (бактериальных, вирусных, токсинеми-ческих), так и неинфекционных болезней, а также для исследовательских целей в иммуно­логии и других науках.

К иммунологическим препаратам на основе антител относятся:


• иммунные сыворотки,

• иммуноглобулины (цельномолекулярные и доменные),

• моноклональные антитела,

• иммунотоксины, иммуноадгезины,

• абзимы (антитела-ферменты).

14.2.5.1. Иммунные сыворотки. Иммуноглобулины

Иммунные лечебные и профилактические сыворотки известны уже более ста лет. Первые иммунные антитоксические противодифте­рийные сыворотки получил Беринг. К насто­ящему времени разработаны и применяются не только антитоксические сыворотки для ле­чения и профилактики дифтерии, столбняка, газовой гангрены, ботулизма, но и множество противобактериальных (противотифозная, дизентерийная, противочумная и др.), а так­же противовирусных сывороток (гриппозная, коревая, против бешенства и др.).






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.