Приравнивая обе силы получаем
Так как р .и v зависят как от координат, так и от времени, то, переходя к производным, имеем
Это уравнение называется уравнением движения среды.
Деформация идеальной (невязкой) газообразной среды, появляющаяся при распространении в ней звуковой волны, является адиабатической, так как звуковые процессы происходят быстро, без теплообмена. Поэтому эти процессы подчиняются закону Бойля-Мариотта .
Акустическое сопротивление. Разность давлений является причиной движения частиц среды, а разность потенциалов — причиной движения электрических зарядов. Скорость колебаний частиц среды аналогична скорости движения зарядов — силе тока.Аналогично электрическому сопротивлению введено понятие волнового акустического сопротивления.
Удельным волновым акустическим сопротивлением называют отношение звукового давления к скорости колебаний. Удельным оно называется потому, что представляет собой сопротивление для единицы площади фронта волны. Для краткости его часто называют акустическим сопротивлением
Акустическое сопротивление определяется прежде всего свойствами среды. В ряде случаев оно зависит от частоты колебаний и от формы фронта волны. В общем виде оно комплексное:
где ωa и qа — активная и реактивная составляющие акустического сопротивления. Наличие реактивной составляющей свидетельствует о том, что между звуковым давлением и скоростью колебаний есть сдвиг фаз. Этот сдвиг определяется из соотношения
1.3. ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ.
Интенсивность звука. Акустические колебания — частный случай механических колебаний, поэтому мгновенное значение акустической мощности, как и в механике, определяется произведением мгновенных значений силы F и скорости колебаний v, т. е. P=Fv. Если имеется в виду сила, действующая на единицу площади, т. е. давление, то следует говорить об удельной мощности колебаний Руд(называемой вектором Умова), равной произведению звукового давления р и скорости колебаний v, т. е.
Если в рассматриваемой точке звукового поля мгновенные значения давления и скорости колебаний имеют одинаковый знак, то вектор Умова направлен в сторону распространения волны, т. е. энергия движется от источника звука; если они имеют разные знаки, то — против движения волны, т. е. энергия движется к источнику звука. Последнее возможно только при наличии сдвига фаз между звуковым давлением и скоростью колебаний и означает наличие реактивной составляющей мощности.
Наибольший интерес представляет среднее значение удельной мощности колебаний I = Pуд распространяющейся в положительном направлении, т. е. среднее значение потока энергии через единицу площади, двигающегося от источника звука к возможному приемнику звука.
Это среднее значение называют интенсивностью или силой звука. Итак, интенсивностью звука называют (среднее) количество звуковой энергии, проходящей в единицу времени через единицу площади, перпендикулярной направлению распространения звуковой волны.В системе СИ единица интенсивности Вт/м2. Для периодических и сложных звуков интенсивность выражается формулами:
Интенсивность звука представляет собой активную составляющую удельной мощности звуковых колебаний.
Реактивная составляющая мощности колебаний непрерывно колеблется в звуковом поле то в сторону распространения волны, то в обратную. Эта часть мощности колебаний представляет собой запас энергии в звуковом поле аналогично запасу энергии в электрическом и магнитном полях электрического тока.
Плотность энергии. Среднее количество звуковой энергии, приходящееся на единицу объема, называют плотностью энергии. Единицей плотности энергии в системе СИ является Дж/м3, а в абсолютной CGS системе — эрг/см3.
ПЛОСКАЯ ВОЛНА.
Тип волны, распространяющийся в среде, зависит от того, каким образом возбуждается волна и от того, как и каким частицам передает свою энергию текущая частица.
Плоской волнойназывается волна с плоским фронтом. При этом лучи являются параллельными. Образуется поблизости от колеблющейся плоскости или если рассматривается небольшой участок волнового фронта точечного излучателя. Причем абсолютная площадь этого участка может быть тем больше, чем дальше мы находимся от излучателя. То, что излучатель считается точечным, также говорит о большом расстоянии до него. Кроме того, точечность излучателя говорит о том, что рассматривается только прямая волна. Лучи, охватывающие участок плоскости рассматриваемого волнового фронта, образуют "трубу". Амплитуда звукового давления в плоской волне не уменьшается при удалении от источника, т.к. не происходит растекания энергии за пределы стенок этой трубы. Если иметь ввиду практически реальные случаи, то это соответствует остронаправленному излучению, например, излучению электростатических панелей большой площади, рупорных излучателей.
Фронт плоской волны представляет собой плоскость. Согласно определению фронта волны звуковые лучи пересекают его под прямым углом, поэтому в плоской волне они параллельны между собой.Так как поток энергии при этом не расходится, интенсивность звука не должна была бы уменьшаться с удалением от источника звука. Тем не менее она уменьшается из-за молекулярного затухания, вязкости среды, запыленности ее, рассеяния и т. п. потерь. Однако эти потери так малы, что с ними можно не считаться при распространении волны на небольшие расстояния. Поэтому обычно полагают, что интенсивность звука в плоской волне не зависит от расстояния до источника звука.
Акустическое сопротивление для плоской волны определяется только скоростью звука и плотностью среды и является активным, вследствие чего давление и скорость колебаний находятся в одинаковой фазе.
СФЕРИЧЕСКАЯ ВОЛНА .
Волна, фронт которой представляет собой сферу, называется сферической. Лучи при этом совпадают с радиусами сферы.
Сферическая волна формируется в следующих случаях.
1. Размеры источника много меньше длины волны и расстояние до источника позволяет считать его точкой. Такой источник называется точечным.
2. Источник представляет собой пульсирующую сферу.
В обоих случаях предполагается, что переотражения волны отсутствуют, т.е. рассматривается только прямая волна. Чисто сферических волн в сфере интересов электроакустики не бывает, это такая же абстракция, как и плоская волна. В области средневысоких частот конфигурация и размеры источников не позволяют считать их ни точкой, ни сферой. А в области низких частот непосредственное влияние начинает оказывать как минимум пол. Единственная близкая к сферической волна формируется в заглушенной камере при малых габаритах излучателя. Но рассмотрение этой абстракции позволяет уяснить некоторые важные моменты распространения звуковых волн. На больших расстояниях от излучателя сферическая волна вырождается в плоскую. Фронт такой волны представляет собой сферическую поверхность, а звуковые лучи согласно определению фронта волны совпадают с радиусами сферы (рис. 1.4). В результате расхождения волн интенсивность звука убывает с удалением от источника. Так как потери энергии в среде малы, как и в случае плоской волны, то при распространении волны на небольшие расстояния с ними можно не считаться. Поэтому средний поток энергии через сферическую поверхность с радиусом rа (рис. 1.4) будет тот же самый, что и через любую другую сферическую поверхность с большим радиусом rb , если в промежутке между ними нет источника или поглотителя энергии.Следовательно, мощность звуковой волны
где Iа и Ib — интенсивность звука для радиусов rа и rb.
Акустическое сопротивление в сферической волне по модулю никогда не превышает сопротивления в плоской волне, чем больше отношение длины волны к ее радиусу (т. е. расстоянию от центра источника звука), тем ближе сдвиг фаз к 90°; с уменьшением этого отношения сдвиг фаз стремится к нулю, т. е. сферическая волна приближается к плоской.Например, для частоты 100 Гц (длина волны λ=340/100=3,4 м) при расстоянии от центра источника звука 0,25 м сдвиг фаз получается равным 65°, а для частоты 5000 Гц (λ=6,8 см) при расстоянии 1 м сдвиг фаз получается около 0,5°.
ЦИЛИНДРИЧЕСКАЯ ВОЛНА.
Для цилиндрической волны интенсивность звука можно определить при условии, что поток энергии не расходится вдоль образующей цилиндра. Аналогично предыдущему случаю (см. рис. 1.4) для высоты цилиндра h:
или I=I1/r, следовательно, для цилиндрической волны интенсивность звука обратно пропорциональна расстоянию от оси цилиндра.
В заключение объясним причину появления сдвига фаз между звуковым давлением и скоростью колебаний. Сдвиг фаз появляется только в тех случаях, когда звуковые лучи расходятся или сходятся. В случае плоской волны звуковые лучи идут параллельно, поэтому каждый слой среды, заключенный между соседними фронтами волны, отстоящими на одинаковом расстоянии друг от друга, имеет одинаковую массу. Массы этих слоев можно представить в виде цепочки одинаковых шаров. Если толкнуть первый шар, то он дойдет до второго и сообщит ему поступательное движение, а сам остановится, затем также будет приведен в движение третий шар, а второй остановится и так далее, т. е. энергия, сообщенная первому шару, будет передаваться последовательно все дальше и дальше. Реактивная составляющая мощности звуковой волны отсутствует.Рассмотрим случай расходящейся волны, когда каждый последующий слой имеет большую массу. Масса шара будет увеличиваться с увеличением его номера, причем сначала быстро, а потом все медленнее и медленнее. Первый шар после столкновения отдает второму только часть энергии и двигается назад, второй приведет в движение третий, но затем тоже пойдет назад. Таким образом, часть энергии сбудет отражаться, т. е. появляется реактивная составлющая мощности, которая определяет реактивную составляющую акустического сопротивления и появление сдвига фаз между давлением и скоростью колебаний.
Шары, удаленные от первого, будут передавать почти всю энергию шарам, находящимся впереди, так как их массы будут почти одинаковыми.
Если массу каждого шара взять равной массе воздуха, заключенной между фронтами волны, находящимися друг от друга на расстоянии полуволны, то чем больше длина волны, тем резче будет изменяться масса шаров по мере увеличения их номеров, тем большая часть энергии будет отражаться при столкновении шаров и тем больший будет сдвиг фаз .
Для малых длин волн массы соседних шаров отличаются незначительно, поэтому отражение энергии будет меньшим.
|