ЧАСТОТНЫЙ ДИАПАЗОН И СПЕКТРЫ. Акустический сигнал имеет изменяющиеся форму и состав спектра. Спектры разделяются на сплошные, дискретные, низко- и высокочастотные. Каждому источнику звука присущи свои особенности состава спектра, которые делают индивидуальную окраску звука. Эту окраску называют темрбом. Тембр (от фр. - timbre) означает "качество тона", "окраску тона" (tone quality). Для оценки тембра звучания важен не только момент его распознавания (т.е. способность отличить один инструмент от другого), но и возможность оценить изменение тембра в процессе исполнения. Здесь важнейшую роль играет динамика изменения спектральной огибающей во времени на всех этапах звучания: атаки, стационарной части, спада. Существуют понятия тембра скрипки, тромбона, органа и т. и., а также тембра голоса: звонкий, когда подчеркнуты высокочастотные составляющие; глухой, когда они подавлены. В первую очередь представляют интерес средний спектр для источников звука каждого типа, а для оценки искажений сигнала — спектр, усредненный за длительный интервал времени (15 с для информационных сигналов и 1 мин для художественных). Усредненный спектр может быть, как правило, сплошной и достаточно сглаженный по форме.
Сплошные спектры характеризуются зависимостью спектральной плотности от частоты (эту зависимость называют энергетическим спектром). Спектральной плотностью называется интенсивность звука в полосе частот шириной, равной единице частоты.Для акустики эту полосу берут равной 1 Гц.
Частотный диапазон акустического сигнала определяют из частотной зависимости спектральных уровней. Это определение можно сделать или по спаду спектральных уровней или приближенно, на слух. Субъективными границами считают заметность ограничения диапазона для 75% слушателей. Приведем частотные диапазоны для ряда первичных источников акустического сигнала, Гц:
речь.................................................... 70—7000
скрипка.........................................250—15 000
треугольник................................1000—16 000
бас-труба............................................. 50—6000
орган-...................................................20—15 000
симфонический оркестр ………… 30—15000
Если спектры имеют плавный спад в ту или иную сторону, то их еще оценивают тенденцией, т. е. средним наклоном спектральных уровней в сторону низких или высоких частот. Например, речевой спектр имеет тенденцию, равную — 6 дБ/окт (спад в сторону высоких частот).
К акустическим сигналам также относятся и акустические шумы. Различают три типа шумов: розовый, белый и речевой. Речевые шумы создаются при одновременном разговоре нескольких человек. “Белые” шумы имеют одинаковую спектральную плотность во всем частотном диапазоне. “Розовые” шумы имеют тенденцию спада плотности на 3 дБ/окт в сторону высоких частот.
- Спектр розового цвета получается, если сила света убывает по гиперболическому закону в сторону фиолетового цвета. Аналогично ему введено понятие «розового» шума Характер поведения каждого обертона во времени также несет важнейшую информацию о тембре. Например, в звучании колоколов особенно четко видна динамика изменения, как по составу спектра, так и по характеру изменения во времени амплитуд его отдельных обертонов: если в первый момент после удара в спектре отчетливо видно несколько десятков спектральных составляющих, что создает шумовой характер тембра, то через несколько секунд в спектре остаются несколько основных обертонов (основной тон, октава, дуодецима и минорная терция через две октавы), остальные затухают, и это создает особый тонально окрашенный тембр звучания.
Иногда спектр представляют в виде дискретного набора обертонов с разными амплитудами. Спектры могут быть представлены в виде спектрограмм, где по вертикальной оси отложена частота, по горизонтальной - время, а амплитуда представлена интенсивностью цвета.
Сплошные спектры характеризуются зависимостью спектральной плотности от частоты (эту зависимость называют энергетическим спектром). Спектральной плотностью называют интенсивность звука в полосе частот шириной, равной единице частоты. Спектральный состав речи в значительной степени зависит от пола, возраста и индивидуальных особенностей говорящего. Для различных людей отклонение уровней сигналов, измеренных в октавных полосах, от типовых уровней может составлять ± 6 дБ.
ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ АКУСТИЧЕСКОГО СИГНАЛА.
К временным (импульсным) характеристикам относятся уровнеграмма сигнала и время корреляции.Уровнеграмма сигнала дает возможность определить резкие переходы интенсивности и, следовательно, с ее помощью можно предъявить требование к постоянным времени трактов передачи сигнала. Такие временные характеристики сигнала, как время корреляции, используют редко, хотя опыты показывают, что этот параметр играет значительную роль при определении качества звучания.
Корреляция - это достаточно сложный, но в определенных отношениях важный параметр, заимствованный из теории вероятности. Дело в том, что любой несущий информацию сигнал следует рассматривать как случайный процесс. Белый шум имеет нулевое среднее значение размаха сигнала и бесконечно широкий спектр. Реальные сигналы отличаются от белого шума тем, что последующие значения зависят от предыдущих. Такая зависимость и называется корреляцией, а среднее значения интервала времени в пределах которого эта зависимость сохраняется, называется временем корреляции. Время корреляции, в частности, важно учитывать потому, что оно определяет время взаимодействия (интерференции) с отраженными сигналами, а, следовательно, и интенсивность интерференционных помех.
ПЕРВИЧНЫЙ РЕЧЕВОЙ СИГНАЛ.
Речь с физической точки зрения состоит из последовательности звуков с паузами между их группами. При нормальном темпе речи паузы появляются между отрывками фраз, так как при этом слова произносятся слитно (хотя слух, как правило, воспринимает слова по отдельности). При замедленном темпе речи, например, при диктовке, паузы могут делаться между словами и даже их частями. Предлоги, союзы звучат всегда слитно с последующим словом.
Один и тот же звук речи разные люди произносят по-разному. Произношение звуков речи зависит от ударения, соседних звуков и т. п. Но при всем многообразии в их произношении они являются физическими реализациями (произнесением) ограниченного числа обобщенных звуков речи, называемых фонемами. Фонема — это то, что человек хочет произнести, а звук речи — это то, что человек фактически произносит. Фонема по отношению к звуку речи играет ту же роль, что и образцовая буква по отношению к ее рукописной форме в конкретном написании.
B русском языке насчитываются 41 основная и 3 неясно звучащих фонемы: 6 гласных (а, о, у, э, и, ы), 1 полугласная (й) и 34 согласных. Гласные буквы я, ю, ё, е (соответствуют или составным фонемам: йа, йу, йо, йэ, или служат для смягчения предыдущей согласной. Согласных фонем больше, чем согласных букв, так как род согласных букв соответствует двум фонемам: мягкой и твердой. Только твердых фонем 3 (ш, ж, ц), только мягких—1 (ч). Остальные l6 существуют в обоих видах: твердом и мягком.
Если связки тонкие и сильно напряжены, то период получается коротким и частота основного тона — высокой; для толстых, слабонапряженных связок частота основного тона низкая. Эта частота для всех голосов лежит в пределах от 70 до 450 Гц. При произнесении речи она непрерывно изменяется в соответствии с ударением и подчеркиванием звуков и слов, а также для проявления эмоций (вопрос, восклицание, удивление и т. д.). Изменение частоты основного тона называют интонацией. У каждого человека свой диапазон изменения частоты основного тона (обычно он бывает немногим более октавы) и своя интонация. Последняя имеет большое значение для узнаваемости говорящего. Основной тон, интонация, устный «почерк» и тембр (окраска) голоса могут служить для опознавания человека. При этом степень достоверности опознавания выше, чем по отпечаткам пальцев. Это свойство используют в разработанной в последнее время аппаратуре, срабатывающей только от определенных голосов.
Импульсы основного тона имеют пилообразную форму, и поэтому при их периодическом повторении получается дискретный спектр с большим числом гармоник (до 40), частоты которых кратны частоте основного тона. Огибающая спектра основного тона имеет спад в сторону высоких частот с крутизной около 6 дБ/окт. Например, для мужского голоса уровень гармоник на частоте 3000 Гц ниже уровня на 100 Гц примерно на 30 дБ.
Звуки речи делят на звонкие и глухие. Звонкие звуки образуются с участием голосовых связок, в этом случае находящихся в напряжении. Под напором воздуха, идущего из легких, они периодически раздвигаются, в результате чего создается прерывистый поток воздуха. Импульсы потока воздуха, создаваемые голосовыми связками с достаточной точностью, могут считаться периодическими. Соответствующий период повторения импульсов называют периодом основного тона голоса То. Обратную величину fo=1\T называют частотой основного тона.
При произнесении глухих звуков голосовые связки находятся в расслабленном состоянии и поток воздуха из легких свободно проходит в полость рта. Встречая на своем пути различные преграды в виде языка, зубов, губ, он образует завихрения, создающие шум со сплошным спектром.
По способу образования согласные делят на сонорные, щелевые, взрывные и аффрикаты (комбинация глухих взрывных и щелевых). Сонорные (л, ль, р, рь, м, мь, н, нь) по звучанию похожи на гласные, но отдельно не произносятся и поэтому отнесены к согласным. Щелевые (в, вь, з, зь, ж, ф, фь, с, сь, ш, х, хь) образуются путем проталкивания потока воздуха в виде импульсов шума через узкие щели, создаваемые языкам и нёбом, губами, зубами, гортанью. Взрывные (п, пь, т, ть, к, кь, б, 6ъ, д, дь, г, гь) образуются путем (резкого проталкивания .потока (воздуха через губы, зубы, гортань. По месту образования фонемы делят на губные, зубные, нёбные, гортанные, передние и задние.
При произнесении звуков речи язык, губы, зубы, нижняя челюсть, голосовые связки должны находиться для каждой фонемы в строго определенном положении или движении. Эти движения называют артикуляциейорганов речи. При этом в речеобразующем тракте создаются определенные для данной фонемы резонансные полости, а для слитного звучания фонем в речи — и определенные переходы от одной формы тракта к другой.
Через речевой тракт при произнесении звуков проходят или тональный импульсный сигнал, или шумовой, или тот и другой вместе. Речевой тракт представляет собой сложный акустический фильтр с рядом резонансов, создаваемых полостями рта, носа и носоглотки, т. е. с помощью артикуляционных органов речи. Вследствие этого тональный или шумовой спектры с монотонной огибающей превращаются в спектры с рядом максимумов и минимумов.
Форманта — термин фонетики, обозначающий акустическую характеристику звуков речи (прежде всего гласных), связанную с уровнем частоты голосового тона и образующую тембр звука. Форманта может характеризоваться либо занимаемой ею частотной полосой, либо средней частотой, соответствующей максимуму амплитуды или энергии составляющих в формантной полосе, и средним уровнем этой энергии. Большинство звуков речи имеет одну или две форманты, что обусловлено участием в образовании этих звуков основных резонаторов голосового аппарата - полости глотки и носоглотки.
Максимально в отдельных звуках замечено до 6 усиленных частотных областей. Однако далеко не все они являются формантами. Некоторые из них никакого значения для распознавания звуков не имеют, хотя и несут в себе довольно значительную энергию.
Формантными являются одна или две частотные области. Исключение из передачи любой из этих областей вызывает искажение передаваемого звука, т. е. либо превращение его в другой звук, либо вообще потерю им признаков звука человеческой речи. рукописной форме в конкретном написании.
Максимумы спектра называют формантами, а нулевые значения — антиформантами. Огибающая спектра для каждой фонемы имеет индивидуальную и вполне определенную форму (рис. 3.3). При произнесении речи спектр ее непрерывно изменяется, в результате чего образуются формантные переходы. Частотный диапазон речи находится в пределах 70 — 7000 Гц.
Звонкие звуки речи, особенно гласные, имеют высокий уровень интенсивности, глухие — низкий. В процессе произнесения речи ее громкость непрерывно изменя-
ется, особенно резко при взрывных звуках речи. Динамический диапазон уровней звуков речи находится в пределах 35—45 дБ. Гласные звуки имеют в среднем длительность около 0,15 с, согласные —около 0,08 с, звук «п» — около 30 мс. Большая длительность гласных звуков необходима для перестройки артикуляционных органов, так как иначе язык будет «заплетаться».
Звуки речи неодинаково информативны. Так, гласные звуки содержат меньшую информацию о смысле речи, чем глухие. Поэтому разборчивость речи снижается при действии шумов, в первую очередь из-за маскировки глухих звуков.
Известно, что для передачи одного и того же сообщения по телеграфу и по речевому тракту требуется различная пропускная способность тракта: для телеграфного сообщения не более 100 бит/с, а для речевого — около 100 000 бит/с (полоса равна 7000 Гц, динамический диапазон 42 дБ, т. е. требуется семизначный код, откуда имеем: 2х7000х7 = 98000 бит/с), т. е. в 1000 раз большая. Может показаться, что речевой сигнал имеет огромную избыточность. Это неверно и вот почему.
.В результате спектральной модуляции изменяется соотношение между частотными составляющими несущей, т. е. изменяется форма огибающей ее спектра (появляются форманты и антиформанты). Почти вся информация о звуках речи заключается в этой спектральной огибающей и ее временном изменении. Эти изменения происходят медленно( в темпе произнесения звуков), поэтому передача сведений об огибающей и ее изменении не требует пропускной способности тракта более 100 бит/с. Но для передачи широкополосной несущей с ее широким динамическим диапазоном требуется очень большая пропускная способность. Кроме того, речевой сигнал при образовании в речевом тракте приобретает много информации, не относящейся к смыслу передаваемой речи (например, фазовую информацию). Эта информация называется сопутствующей. Для ее передачи также расходуется пропускная способность тракта. Из этого следует, что избыточность речевого сигнала лишь немного превышает избыточность телеграфного сигнала с таким же сообщением: речевой сигнал отличается от телеграфного лишь информацией об эмоциях и личности говорящего.
Поэтому для передачи смысла достаточно передавать сведения о форме огибающей спектра речи, а также об изменении основного тона речи и переходов тон-шума. Эти сигналы идут от речевого центра мозга.
- Частично информация о звуках речи заключена в переходах от тонального спектра к шумовому и обратно (т. е. в переходах от звонких звуков к глухим и обратно), а информация о сигнале — еще и в интонации. По фонетической теории информация заключается только в скорости изменения спектральных уровней.
- Речевой сигнал можно уподобить водоему, в котором находится рыба. Водоем может иметь большой объем, а полезной информации (рыбы) в нем может быть немного.
ВТОРИЧНЫЙ СИГНАЛ.
Вторичный сигнал должен точно воспроизводить первичный, но это не всегда требуется, так как слух человека может и не заметить их несоответствие. К тому же на практике точное соответствие их часто невозможно или очень трудно осуществить. При художественном вещании, телевидении и звукозаписи надо стремиться к этому соответствию в пределах, при которых слуховое ощущение, создающееся у слушателя, было бы близко к тому ощущению, которое он получает, находясь в месте исполнения данной программы при условии достаточно хороших акустических условий в этом месте. Для информационных программ вещания и телефонной связи этого соответствия добиваются в первую очередь для получения полной понятности речи, а затем для достаточно высокого качества звучания. Только в этом случае необходимо стремиться к более точному соответствию вторичного сигнала первичному, В обоих случаях существенную роль играют экономические соображения.
Нарушение точности передачи, замечаемое слухом, бывает самого разнообразного вида. Рассмотрим основные из них: потерю акустической перспективы, смещение уровней, ограничение динамического и частотного Диапазона сигнала, помехи, искажения.
Потеря акустической перспективы. При передаче звукового сигнала по одноканальной системе получается ощущение слушания одним ухом, даже при наличии нескольких микрофонов в помещении, откуда ведется передача, и при разнесенных вторичных источниках звука. Источник звука для слуха будет всегда казаться находящимся в некотором среднем положении по отношению к фактическим вторичным источникам, поскольку временной сдвиг и разность уровней для обоих ушей слушателя не зависят от местонахождения первичного источника звука. Этот дефект может быть до некоторой степени исправлен с помощью стереофонической системы передачи, основанной на многоканальной системе передачи сигнала .
Смещение уровней. Поскольку по тракту передачи сигналов не передается информация об абсолютных уровнях звучания первичного сигнала, то слушатель (а при массовом слушании — оператор на приемном конце) по своему усмотрению устанавливает уровень вторичного сигнала. При этом не всегда можно восстановить нужный уровень первичного сигнала из-за недостаточной мощности аппаратуры на приемном конце, а также из-за условий слушания (например, в квартирах с плохой звукоизоляцией).
Смещение уровней приводит к изменению соотношения между громкостями низкочастотных и среднечастотных составляющих первичного и вторичного сигналов, так как смещение среднего уровня вторичного сигнала вверх по отношению к среднему уровню первичного приводит к субъективному повышению громкости низкочастотных составляющих, смещение вниз — к их ослаблению.
Ограничение динамического диапазона. Поскольку динамический диапазон канала ограничен снизу шумами, а сверху — перегрузкой и нелинейностью отдельных звеньев канала передачи, то во избежание искажений его сжимают в начале тракта (во всяком случае до звена, в котором скорее всего может ограничиться или исказиться сигнал). Этот дефект может быть частично исправлен путем расширения динамического диапазона сигнала на конце тракта, что не всегда возможно, так как на приемном конце может быть неизвестно, насколько был сжат этот диапазон. Кроме того, попытка расширить диапазон (применением экспандеров) усложняет аппаратуру.
Ограничение частотного диапазона. Поскольку тракт передачи акустических сигналов не пропускает весь их частотный диапазон, говорят об ограничении частотного диапазона.
Помехи. При передаче на сигнал накладываются различного рода помехи, в том числе шумы электрического и акустического происхождения. Последние имеются как в месте нахождения первичного источника, звука, так и в месте нахождения слушателя.
Искажения. По сути дела все перечисленные несоответствия первичного и вторичного сигналов являются искажениями в широком смысле этого понятия. Но обычно под этим термином понимают более узкий тип искажений. К ним относятся линейные, нелинейные, параметрические и переходные (временные) искажения.
ШУМЫ И ПОМЕХИ
Одна из наиболее серьезных причин, мешающих высококачественному воспроизведению передаваемой программы, - помехи, возникающие в тракте звукопередачи. Особенно неприятны на слух помехи в паузах, а также на тихих местах исполнения, когда они не маскируются полезным сигналом и потому существенно мешают восприятию звука.
Помехи по своему характеру и происхождению разделяются на фон, шум и различного характера внешние наводки. Влияние шумов и помех сводится к маскировке вторичного акустического сигнала независимо от их происхождения (акустического или электрического). Шумы сдвигают порог слышимости, который не зависит от времени, если шумы относятся к «гладким», т. е. имеют пик-фактор, не превышающий 6 дБ. К этим шумам относятся различные флуктуационные шумы, например шумы; дробового эффекта, речевые шумы от нескольких голосов, звучащих одновременно. Импульсные шумы создают порог слышимости, изменяющийся во времени в зависимости от пик-фактора шума и длительности импульсов. Из-за наличия постоянной времени у слуха ощущение кратковременных импульсов получается сглаженным: происходит выравнивание временной зависимости порога слышимости. Импульсные шумы не только маскируют полезный сигнал, но и искажают его, создавая комбинационные частоты шума и сигнала. Получается нечто похожее на взаимную модуляцию сигнала и шума.
Спектр шумов электрического происхождения, как; правило, близкий к равномерному, а акустического происхождения — ближе к речевому. Поэтому частотная зависимость порога слышимости для первых имеет тенденцию роста к высоким частотам, так как ширина критических полосок растет с увеличением частоты. Для речевых шумов порог слышимости почти не зависит от частоты.
Индустриальные, атмосферные и станционные помехи, кроме тональных, могут быть отнесены и к импульсным, и к гладким, с равномерным или низкочастотным спектром. Кроме этих помех, приходится иногда считаться с помехами от самомаскировки речи, т. е. с маскировкой слабых звуков, следующих за громкими.
Фон проявляется обычно в виде прослушиваемого низкого однотонного гудения с частотой 50 или 100 Гц. Причина фона может быть двоякой: чаще всего это плохая фильтрация переменной составляющей напряжения, выпрямленного в источнике питания и используемого для питания транзисторов или электронных ламп усилителей. Но могут проявиться и внешние наводки, т.е. возбуждения в самом усилителе или в присоединенных к нему проводах и линиях колебаний, появляющиеся за счет электромагнитной связи этих цепей с посторонними источниками электрических и магнитных полей (например, трансформаторов, силовых электрических кабелей, театральных софитов и т.п. Таким же путем, т.е. путем электромагнитных наводок на токоведущие цепи канала передачи звукового сигнала, могут проникнуть в канал и, так называемые, "внятные" помехи, например, посторонние программы близко расположенных мощных радиовещательных станций и т.п. Для борьбы с наводками любого характера следует тщательно защищать, применяя экранировку, те цепи, по которым протекают слабые токи ( например, микрофонные провода).
Принцип действия экранов следующий. Провод, по которому передаются токи звуковой частоты, заключаются в гибкую и достаточно густую металлическую сетку , обязательно заземленную. Электрические заряды, образующиеся на экране из-за влияния внешних полей, стекают на землю, не наводя помех на токоведущие части схемы.
Экранами снабжаются также все используемые в схемах трансформаторы и катушки индуктивности - потенциальные источники сильных помех. Эти экраны, выполненные в виде кожухов из железа, пермаллоя или других подобных магнитных материалов, выполняют двоякую роль: предохраняют трансформатор от воздействия внешних магнитных полей и, кроме того, не дают возможности полю рассеяния самого трансформатора оказывать нежелательное влияние на соседние детали схемы.
Еще более неприятен на слух и трудно устраним собственный шум транзисторов, электронных ламп и резисторов, входящих в схему. Это характерное шипение, с физической точки зрения - тот же звук с непрерывным спектром, его энергия распределена на широком участке диапазона звуковых частот. На практике часто встречаются шумы, отличающиеся один от другого не только по интенсивности, но и по тембру и ритму. Но самым характерным и типичным шумом является шум, не имеющий ни определенного тона, ни ритма, у которого, следовательно, ни одна частотная полоса не отличается от другой по энергии и ни один отрезок, выделенный во времени, не отличается от другого по частотному составу. Такой шум называют "белым" по аналогии с принятым в оптике наименованием белого цвета, который можно, как известно получить, смешивая в одинаковых пропорциях все цвета солнечного спектра.
Борьба с акустическими шумами ведется путем устранения (или ослабления) действия источников шума, а также путем повышения звукоизоляции помещений. Учет их действия на прием речевого сигнала делается при расчете и измерении разборчивости речи.
ЛИНЕЙНЫЕ ИСКАЖЕНИЯ.
Линейные искажения изменяют амплитудные и фазовые соотношения между имеющимися спектральными компонентами сигнала и за счет этого искажают его временную структуру. Такие изменения воспринимаются как искажения тембра или «окрашивание» звука.
При звукопередаче первичные соотношения между частотными компонентами звука должны быть сохранены. В связи с этим, качество любого участка звукового канала оценивается его амплитудно-частотной (сокращенно частотной) характеристикой, для обозначения которой часто используют аббревиатуру АЧХ. Под АЧХ понимают график зависимости коэффициента передачи от частоты сигналов, подаваемых на вход данного участка канала или отдельного звукотехнического устройства. Коэффициент передачи - это отношение величин сигналов на входе усилителя и его выходе.
Частотная характеристика тракта передачи (частотная зависимость коэффициента передачи) изменяет соотношения между амплитудами частотных составляющих. Это приводит к субъективному ощущению изменения тембра.
Показателем степени частотных искажений, возникающих в каком-либо устройстве, служит неравномерность его амплитудно-частотной характеристики, количественным показателем на какой-либо конкретной частоте спектра сигнала является коэффициент частотных искажений.
Коэффициент частотных искажений — отношение коэффициента передачи на средних частотах к его значению на данной частоте.
В реальных условиях частотная характеристика во всем диапазоне звуковых частот (от 20 до 20000 Гц) прямолинейной не бывает из-за наличия в схеме индуктивностей и емкостей, меняющих свое сопротивление переменному току при изменении его частоты.
Частотные искажения оценивают по величине неравномерности частотной характеристики
В общем случае коэффициент передачи тракта
где р1 и р2 — звуковые давления в начале и конце тракта; \К\—модуль коэффициента передачи; ф — фазовый сдвиг в тракте.
Коэффициент передачи, как правило, зависит от частоты. Так как слух не реагирует непосредственно на сдвиг фаз между составляющими сигнала, в дальнейшем его не будем рассматривать и под термином «коэффициент передачи» будем подразумевать его модуль.
Частотная зависимость коэффициента передачи, называемая частотной характеристикой тракта передачи, приводит к изменению соотношений между амплитудами частотных составляющих, входящих в первичный сигнал. Субъективно эти искажения ощущаются как изменение тембра первичного сигнала.
Например, если подавлены низкочастотные составляющие, то звучание будет звенящее. При подавлении высокочастотных составляющих звук глухой. При резком подчеркивании низкочастотных составляющих звучание получается бубнящим, а при резком подчеркивании высокочастотных — свистящим. Эти искажения (называемые частотными) оценивают по величине неравномерности частотной характеристики
где Кмакс и Кмин — максимальный и минимальный коэффициенты передачи в заданном диапазоне частот.
Неравномерность часто измеряют в логарифмических единицах, в таком случае
где Lмакс и Lмин — максимальный и минимальный уровни вторичного сигнала при постоянстве уровня первичного. На рис. 3.4 показана одна из характеристик тракта передачи сигнала.При определение неравномерности частотной характеристики следует исключать из рассмотрения пики и провалы в частотной
Рис 3.4. Определение неравномерности частотной характеристики и частотного диапазона
характеристике, если они уже 1/8 октавы. Такое условие введено из-за наличия широких критических полосок слуха, а также из-за того, что при быстром изменении первичного сигнала его спектр расплывается и эти пики и провалы сглаживаются.
Как правило, частотная характеристика наиболее неравномерна в областях самых низких и самых высоких частот диапазона, т. е. вблизи его границ, поэтому для широкополосных трактов передачи сигнала, например вещательных, неравномерность частотной характеристики часто задают в двух диапазонах: номинальном и в основном (200—5000 Гц).
В тех случаях, когда аппаратура не может быть изготовлена с заданной неравномерностью, в требуемом частотном диапазоне оговаривают частотный диапазон, в котором неравномерность не превышает заданную норму.
Частотно-амплитудные искажения обычно устраняют путем частотной коррекции в звеньях тракта, ближайших к искажающим.
Нормы на допустимые частотные искажения были определены экспериментально. Установлено, что на низких частотах искажения более заметны, чем на высоких.
НЕЛИНЕЙНЫЕ ИСКАЖЕНИЯ.
Нелинейные искажения представляют собой изменения формы колебаний, проходящих через электрическую цепь (например, через усилитель или трансформатор), вызванные нарушениями пропорциональности между мгновенными значениями напряжения на входе этой цепи и на ее выходе. Это происходит, когда характеристика выходного напряжения нелинейно зависит от входного. Количественно нелинейные искажения оцениваются коэффициентом нелинейных искажений или коэффициентом гармоник.
Нелинейные искажения при малой их величине изменяют тембр звучания, затрудняют раздельное восприятие звуков инструментов и голосов. При более сильных нелинейных искажениях появляются неприятные хрипы и дребезжание.
Нелинейные искажения изображены на рисунке.
Нелинейные искажения: а - сигнал прошел
через линейную цепь;б- на выходе
нелинейной цепи форма сигнала искажена.
При подаче "чистого" синусоидального тона на элемент схемы, имеющий нелинейную характеристику, на его выходе появляются отсутствовавшие на входе высшие гармоники, т.е. колебания с частотами, в целое число раз большими, чем частота основного колебания. Эти гармоники складываются с основным, "чистым" тоном, меняют его форму и придают звучанию новый тембр, как видно из рисунка.
Нелинейные искажения - явление, в общем, сложное и не однозначное, его числовое описание затруднено и даже иногда не возможно. На практике коэффициент нелинейных искажений определяют по отношению к каким-либо чистым тонам. В этом случае коэффициентом нелинейных искажений цепи или устройства называют выраженное в процентах отношение суммарного напряжения всех высших гармоник (или комбинационных частот) на его выходе к напряжению основного колебания. В первом случае это отношение называют коэффициентом гармоник, а во втором - коэффициентом комбинационных частот. Наиболее употребительным способом измерения нелинейных искажений является определение коэффициента гармоник.
Результаты исследований показали, что слушатель меньше замечает несимметричные искажения, когда наибольшей по амплитуде оказывается вторая гармоника, так как она находится в октаве с основной частотой. Симметричные искажения более заметны, так как третья гармоника получается очень большой и оказывается в квинте с основной. При сужении полосы частот заметность искажения уменьшается. Это объясняется тем, что ряд гармоник и комбинационных составляющих оказывается за пределами передаваемого диапазона частот.
Как правило, нелинейные искажения наиболее велики на низких частотах, поэтому нормы на них даются для нескольких диапазонов частот. С увеличением уровня сигнала нелинейные искажения растут, поэтому нормы на них дают раздельно для средних и пиковых уровней.
Нелинейные искажения чаще всего оцениваются е помощью коэффициента нелинейных искажений (КНИ)
где Xmn — амплитуды гармоник сигнала, начиная со второй; Xm — амплитуда основной составляющей.
ПЕРЕХОДНЫЕ ИСКАЖЕНИЯ
При сжатии динамического диапазона применяют различные автоматические регуляторы уровня. Эти регуляторы имеют большую постоянную времени восстановления и вызывают искажения, называемые переходными. Переходные искажения создаются собственными колебаниями, происходящими в различных звеньях тракта. По своему звучанию они сходны с нелинейными искажениями, так как в сигнале появляются комбинационные частоты.
Несимметрданые искажения получаются для нечетных степеней зависимости y=f(x), симметричные — для четных.
|