Пиши Дома Нужные Работы

Обратная связь

Систематика и номенклатура микробов

Микробы, или микроорганизмы (бактерии, грибы, простейшие, вирусы), систематизиро­ваны по их сходству, различиям и взаимо­отношениям между собой. Этим занимается специальная наука — систематика микроор­ганизмов. Систематика включает три части: классификацию, таксономию и идентифика­цию. В основу таксономии (от греч. taxis — рас­положение, порядок) микроорганизмов поло­жены их морфологические, физиологические, биохимические и молекулярно-биологические свойства. Различают следующие таксономи­ческие категории: царство, подцарство, отдел, класс, порядок, семейство, род, вид, подвид и др. В рамках той или иной таксономичес­кой категории выделяют таксоны — группы организмов, объединенные по определенным однородным свойствам. Названия микроор­ганизмов регламентируются Международным кодексом номенклатуры (зоологической, бота­нической, номенклатуры бактерий, вирусов).

Микроорганизмы представлены доклеточ-ными формами (вирусы — царство Vira) и клеточными формами (бактерии, архебакте-рии, грибы и простейшие). По новому высше­му уровню в иерархии классификации среди клеточных форм жизни различают 3 доме­на (или «империи»): «Bacteria», «Archaea» и «Eukarya»:

□ домен «Bacteria» — прокариоты, пред­ставленные настоящими бактериями (эубак-териями);

□ домен «Archaea» — прокариоты, пред­ставленные архебактериями;

□ домен «Eukarya» — эукариоты, клетки которых имеют ядро с ядерной оболочкой и ядрышком, а цитоплазма состоит из высоко­организованных органелл — митохондрий, аппарата Гольджи и др. Домен «Eukarya» вклю­чает: царство Fungi (грибы); царство живот-


ных Animalia (включает простейшие — под­царство Protozoa); царство растений Plantae.



Домены включают царства, типы, классы, порядки, семейства, роды, виды. Одной из ос­новных таксономических категорий является вид {species). Вид — это совокупность особей, объединенных по близким свойствам, но от­личающихся от других представителей рода.

Совокупность однородных микроорганиз­мов, выделенных на питательной среде, ха­рактеризующихся сходными морфологичес­кими, тинкториальными (отношение к кра­сителям), культуральными, биохимическими и антигенными свойствами, называется чис­той культурой.

Чистая культура микроорганизмов, выделен­ных из определенного источника и отличаю­щихся от других представителей вида, называ­ется штаммом. Штамм — более узкое понятие, чем вид или подвид. Близким к понятию штам­ма является понятие клона. Клон представляет собой совокупность потомков, выращенных из единственной микробной клетки.

Для обозначения некоторых совокупностей микроорганизмов, отличающихся по тем или иным свойствам, употребляется суффикс var (разновидность) вместо ранее применявшегося type. Поэтому микроорганизмы в зависимости от характера различий обозначают как морфо-вары (отличие по морфологии), резистенто-вары (отличие по устойчивости, например, к антибиотикам), серовары (отличие по антиге­нам), фаговары (отличие по чувствительности к бактериофагам), биовары (отличие по био­логическим свойствам), хемовары (отличие по биохимическим свойствам) и т. д.

Для идентификации и типирования бакте­рий используют фенотипические, генотипи-ческие и филогенетические показатели (сущ­ность их описана в последующих главах).

ФЕНОТИПИЧЕСКИЕ: окраска по Граму, морфологические и культуральные свойс-


тва, биохимические реакции, хромогенные ферментативные реакции, использование ис­точников углевода, антибиотикограмма, бак-териоцинотипирование, фаготипирование, антигенные свойства, химический состав клеточной стенки (пептидогликан, миколо-вая кислота и др.), а также белков и липидов клетки.

ГЕНОТИПИЧЕСКИЕ: соотношение G+C, гибридизация ДНК, молекулярное зондиро­вание, плазмидный анализ, полиморфизм длины фрагментов рестрикции ДНК, рибо-типирование.

ФИЛОГЕНЕТИЧЕСКИЕ: анализ рРНК-пос-ледовательности, РНК-РНК-гибридизация, амплификация полиморфной ДНК с исполь­зованием производных праймеров, секвени-рование 16S и 23S рРНК.

Классификация и морфология бактерий

Классификация бактерий. Решением Международного кодекса для бактерий ре­комендованы следующие таксономические категории: класс, отдел, порядок, семейство, род, вид. Название вида соответствует бинар­ной номенклатуре, т. е. состоит из двух слов. Например, возбудитель сифилиса пишется как Treponema pallidum. Первое слово — на-


звание рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы. При повторном упоминании вида родовое название сокращается до на­чальной буквы, например: Т. pallidum.

Бактерии относятся к прокариотам, т.е. доядерным организмам, поскольку у них имеется примитивное ядро без оболочки, ядрышка, гистонов. а в цитоплазме отсутс­твуют высокоорганизованные органеллы (митохондрии, аппарат Гольджи, лизосомы и др.)

В старом Руководстве Берджи по систематичес­кой бактериологии бактерии делили по особен­ностям клеточной стенки бактерий на 4 отдела: Gracilicutes — эубактерии с тонкой клеточной стенкой, грамотрицательные; Firmicutes эубак­терии с толстой клеточной стенкой, грамположи-тельные; Tenericutes — эубактерии без клеточной стенки; Mendosicutes — архебактерии с дефектной клеточной стенкой.

Каждый отдел был разделен на секции, или группы, по окраске по Граму, форме клеток, потребности в кислороде, подвижности, особенностям метаболизма и питания.

Согласно 2-му изданию (2001 г.) Руководства Берджи, бактерии делят на 2 домена: «Bacteria» и «Archaea» (табл. 2.1).


Таблица. Характеристика доменов Bacteria и Archaea

 

Домен «Bacteria» (эубактерии) Домен «Archaeа» (архебактерии)
В домене «Bacteria» можно выделить следующие бактерии: 1) бактерии с тонкой клеточной стенкой, грамотрицательные*; 2) бактерии с толстой клеточной стенкой, грамположительные**; 3) бактерии бет клеточной стенки (класс Mollicutes — микоплаз- мы) Архсбактерии не содержат пепти-догликан в клеточной стенке. Они имеют особые рибосомы и рибосом-ные РНК (рРНК). Термин «архебак­терии- появился в 1977 г. Это одна из древних форм жизни, на что ука­зывает приставка «архе». Среди них нет возбудителей инфекций

*Среди тонкостенных грамотрицательных эубактерий различают:

• сферические формы, или кокки (гонококки, менингококки, вейлонеллы);

• извитые формы — спирохеты и спириллы;

• палочковидные формы, включая риккетсии.

** К толстостенным грамположительным эубактериям относят:

• сферические формы, или кокки (стафилококки, стрептококки, пневмококки);

• палочковидные формы, а также актиномицеты (ветвящиеся, нитевидные бактерии), коринебактерии (булавовидные бак­терии), микобактерии и бифидобактерии (рис. 2.1).


Большинство грамотрицательных бакте­рий объединены в тип протеобактериий. ос­нованный на сходстве по рибосомной РНК «Proteobacteria» — по имени греческого бога Протеуса. принимавшего разнообразные об­лики). Они появились от общего фотосинте-тического предка.

Грамположительные бактерии, согласно изученным последовательностям рибосом­ной РНК, являются отдельной филогенети­ческой группой с двумя большими подот­делами — с высоким и низким соотноше­нием G+C (генетическое сходство). Как и протеобактерии, эта группа метаболически разнообразная.

В домен «Bacteria» входят 22 типа, из кото­рых медицинское значение имеют следующие:

Тип Proteobacteria

КлассAlphaproteobacteria. Роды:Rickettsia, Orientia, Ehrlichia, Bartonella, Brucella


КлассBetaproteobacteria. Роды:Burkholderia, Alcaligenes, Bordetella, Neisseria, Kingella, Spirillum

КлассGammaproteobacteria. Роды:Francisella, Legionella, Coxiella, Pseudomonas, Moraxella, Acinetobacter, Vibrio, Enterobacter, Callimatobacterium, Citrobacter, Edwardsiella, Erwinia, Escherichia, Hafnia, Klebsiella, Morganella, Proteus, Providencia, Salmonella, Serratia, Shigella, Yersinia, Pasteurella

КлассDeltaproteobacteria. Род: Bilophila

КлассEpsilonproteobacteria. Роды:Campylobacter, Helicobacter, Wolinella

Тип Firmicutes (главным образом грамполо­жительные)

КлассClostridia. Роды:Clostridium, Sarcina, Peptostreptococcus, Eubacterium, Peptococcus, Veillonella (грамотрицательные)

КлассMollicutes. Роды: Mycoplasma, Ureaplasma

КлассBacilli. Роды:Bacillus, Sporosarcina, Listeria, Staphylococcus, Gemella, Lactobacillus, Pediococcus, Aerococcus, Leuconostoc, Streptococcus, Lactococcus

Тип Actinobacteria


КлассActinobacteria. Роды:Actinomyces, Arcanodacterium, Mobiluncus, Micrococcus, Rothia, Stomatococcus, Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, Bifidobacterium, Gardnerella

Тип Clamydiae

КлассClamydiae. Роды:Clamydia, Clamydophila

Тип Spirochaetes

КлассSpirochaetes. Роды:Spirochaeta, Borrelia, Treponema, Leptospira

Тип Bacteroidetes

КлассBacteroidetes. Роды:Bacteroides, Porphyromonas, Prevotella

КлассFlavobacteria. Роды:Flavobacterium

Подразделение бактерий по особенностям строения клеточной стенки связано с воз­можной вариабельностью их окраски в тот или иной цвет по методу Грама. Согласно этому методу, предложенному в 1884 г. дат­ским ученым X. Грамом, в зависимости от результатов окраски бактерии делятся на грамположительные, окрашиваемые в сине-фиолетовый цвет, и грамотрицательные, кра­сящиеся в красный цвет. Однако оказалось, что бактерии с так называемым грамположи-тельным типом клеточной стенки (более тол­стой, чем у грамотрицательных бактерий), например, бактерии рода Mobiluncus и не­которые спорообразующие бактерии, вместо обычной грамположительной окраски име­ют грамотрицательную окраску. Поэтому для таксономии бактерий бульшую значимость, чем окраска по Граму, имеют особенности строения и химического состава клеточных стенок.

2.2.1. Формы бактерий

Различают несколько основных форм бак­терий (см. рис. 2.1) — кокковидные, палочко­видные, извитые и ветвящиеся, нитевидные формы бактерий.

Сферические формы, или кокки,— шаро­видные бактерии размером 0,5-1,0 мкм*, ко­торые по взаимному расположению делятся на микрококки, диплококки, стрептококки, тетракокки, сарцины истафилококки.


 

Микрококки(от греч. micros — малый) — отдельно расположенные клетки.

Диплококки(от греч. diploos — двойной), или парные кокки, располагаются парами (пневмококк, гонококк, менингококк), так как клетки после деления не расходятся. Пневмококк(возбудитель пневмонии) име­ет с противоположных сторон ланцетовид­ную форму, а гонококк (возбудитель гонореи) и менингококк (возбудитель эпидемического менингита) имеют форму кофейных зерен, обращенных вогнутой поверхностью друг к другу.

Стрептококки(от греч. streptos — цепоч­ка) — клетки округлой или вытянутой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.

Сарцины(от лат. sarcina — связка, тюк) рас­полагаются в виде пакетов из 8 и более кокков, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях.

Стафилококки(от греч. staphyle — виног­радная гроздь) — кокки,расположенные в виде грозди винограда в результате деления в разных плоскостях.

Палочковидные бактерииразличаются по размерам, форме концов клетки и взаим­ному расположению клеток. Длина клеток варьирует от 1,0 до 10 мкм, толщина — от 0,5 до 2,0 мкм. Палочки могут быть правильной (кишечная палочка и др.) и неправильной (коринебактерии идр.) формы, в том числе ветвящиеся, например, у актиномицетов. К наиболее мелким палочковидным бактериям относятся риккетсии.

Концы палочек могут быть как бы обре­занными (сибиреязвенная бацилла), закруг­ленными (кишечная палочка), заостренны­ми (фузобактерии) или в виде утолщения. В последнем случае палочка похожа на булаву (коринебактерии дифтерии).

Слегка изогнутые палочки называются виб­рионами (холерный вибрион). Большинство па­лочковидных бактерий располагается беспоря­дочно, так как после деления клетки расходятся. Если после деления клетки остаются связанны-


ми общими фрагментами клеточной стенки и не расходятся, то они располагаются под углом друг к другу (коринебактерии дифтерии) или образуют цепочку (сибиреязвенная бацилла).

Извитые формы— спиралевидные бактерии, например спириллы,имеющие вид штопоро-образно извитых клеток. К патогенным спи­риллам относится возбудитель содоку (болезнь укуса крыс). К извитым также относятся кам-пилобактерии и хеликобактерии, имеющие из­гибыкак у крыла летящей чайки; близки к ним и такие бактерии, как спирохеты. Спирохеты— тонкие, длинные, извитые

спиралевидной формы) бактерии, отличаю­щиеся от спирилл подвижностью, обуслов­ленной сгибательными изменениями клеток. Спирохеты состоят из наружной мембраны

клеточной стенки), окружающей протоплаз­матический цилиндр с цитоплазматической мембраной и аксиальной нитью (аксистиль). Ахсиальная нить находится под наружной мембраной клеточной стенки (в периплазме) и как бы закручивается вокруг протоплазма-тического цилиндра спирохеты, придавая ей винтообразную форму (первичные завитки спирохет). Аксиальная нить состоит из перип-лазматических фибрилл — аналогов жгутиков бактерий и представляет собой сократитель­ный белок флагеллин. Фибриллы прикрепле­ны к концам клетки (рис. 2.2) и направлены навстречу друг другу. Другой конец фибрилл свободен. Число и расположение фибрилл варьируют у разных видов. Фибриллы учас­твуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и пос­тупательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками. Спирохеты


плохо воспринимают красители. Обычно их окрашивают по Романовскому—Гимзе или серебрением. В живом виде спирохеты ис­следуют с помощью фазово-контрастной или темнопольной микроскопии.

Спирохеты представлены 3 родами, пато­генными для человека: Treponema, Borrelia, Leptospira.

Трепонемы(род Treponema) имеют вид тон­ких штопорообразно закрученных нитей с 8—12 равномерными мелкими завитками. Вокруг протопласта трепонем расположе­ны 3—4 фибриллы (жгутики). В цитоплазме имеются цитоплазматические филаменты. Патогенными представителями являются Т. pallidum — возбудитель сифилиса, Т. pertenue — возбудитель тропической болезни — фрам-безии. Имеются и сапрофиты — обитатели полости рта человека, ила водоемов.

Боррелии(род Borrelia), в отличие от трепо­нем, более длинные, имеют по 3—8 крупных завитков и 7—20 фибрилл. К ним относятся воз­будитель возвратного тифа (В. recurrentis) и воз­будители болезни Лайма (В. burgdorferi и др.).

Лептоспиры(род Leptospira) имеют завитки неглубокие и частые — в виде закрученной веревки. Концы этих спирохет изогнуты на­подобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобрета­ют вид букв S или С; имеют 2 осевые нити (жгутики). Патогенный представитель L. in­terrogans вызывает лептоспироз при попада­нии в организм с водой или пищей, приводя к развитию кровоизлияний и желтухи.

Риккетсии— мелкие, грамотрицательные палочковидные бактерии (0,3—2,0 мкм), об-лигатные (обязательные) внутриклеточные паразиты. Размножаются бинарным деле-


нием в цитоплазме, а некоторые — в яд­ре инфицированных клеток. Обитают в чле­нистоногих (вшах, блохах, клещах) которые являются их хозяевами или переносчиками. Свое название риккетсии получили по име­ни X. Т. Риккетса — американского ученого, впервые описавшего одного из возбудителей (пятнистая лихорадка Скалистых гор). Форма и размер риккетсии могут меняться (клетки неправильной формы, нитевидные) в зависи­мости от условий роста. Структура риккетсии не отличается от таковой грамотрицательных бактерий.

Риккетсии обладают независимым от клет­ки хозяина метаболизмом, однако, возможно, они получают от клетки хозяина макроэр-гические соединения для своего размноже­ния. В мазках и тканях их окрашивают по Романовскому—Гимзе, по Маккиавелло— Здродовскому (риккетсии красного цвета, а инфицированные клетки — синего).

У человека риккетсии вызывают эпиде­мический сыпной тиф (Rickettsia prowazekii), клещевой риккетсиоз (R. sibirica), пятнистую лихорадку Скалистых гор (R. rickettsii) и дру­гие риккетсиозы.

Хламидии— относятся к облигатным внут­риклеточным кокковидным грамотрицатель-ным (иногда грамвариабельным) бактериям. Хламидии размножаются только в живых клетках: их рассматривают как энергетичес­ких паразитов; они не синтезируют адено-зинтрифосфат (АТФ) и гуанозинтрифосфат (ГТФ). Вне клеток хламидии имеют сфери­ческую форму (0,3 мкм), метаболически неак­тивны и называются элементарными тельца­ми. В клеточной стенке элементарных телец имеется главный белок наружной мембраны и цистеиннасыщенный белок. Геном хламидии содержит в 4 раза меньше генетической ин­формации, чем геном кишечной палочки.

Элементарные тельца попадают в эпите­лиальную клетку путем эндоцитоза с форми­рованием внутриклеточной вакуоли. Внутри клеток они увеличиваются и превращаются в делящиеся ретикулярные тельца, образуя скопления в вакуолях (включения). Из ре­тикулярных телец образуются элементарные тельца, которые выходят из клеток путем эк-зоцитоза или лизиса клетки. Вышедшие из


клетки элементарные тельца вступают в но­вый цикл, инфицируя другие клетки (рис. 16.11.1). У человека хламидии вызывают по­ражения глаз (трахома, конъюнктивит), уро-генитального тракта, легких и др.

Актиномицеты— ветвящиеся, нитевидные или палочковидные грамположительные бак­терии. Свое название (от греч. actis — луч, mykes — гриб) они получили в связи с обра­зованием в пораженных тканях друз — гранул из плотно переплетенных нитей в виде лучей, отходящих от центра и заканчивающихся кол-бовидными утолщениями. Актиномицеты, как и грибы, образуют мицелий — нитевид­ные переплетающиеся клетки (гифы). Они формируют субстратный мицелий, обра­зующийся в результате врастания клеток в питательную среду, и воздушный, растущий на поверхности среды. Актиномицеты могут делиться путем фрагментации мицелия на клетки, похожие на палочковидные и кокко-видные бактерии. На воздушных гифах акти-номицетов образуются споры, служащие для размножения. Споры актиномицетов обычно не термостойки.

Общую филогенетическую ветвь с актино-мицетами образуют так называемые нокарди-оподобные (нокардиоформные) актиномице­ты— собирательная группа палочковидных, неправильной формы бактерий. Их отдельные представители образуют ветвящиеся формы. К ним относят бактерии родов Corynebacterium, Mycobacterium, Nocardianjxp. Нокардиоподобные актиномицеты отличаются наличием в кле­точной стенке Сахаров арабинозы, галактозы, а также миколовых кислот и больших коли­честв жирных кислот. Миколовые кислоты и липиды клеточных стенок обуславливают кис-лотоустойчивость бактерий, в частности ми-кобактерий туберкулеза и лепры (при окраске по Цилю—Нельсену они имеют красный цвет, а некислотоустойчивые бактерии и элементы ткани, мокроты — синий цвет).

Патогенные актиномицеты вызывают акти-номикоз, нокардии — нокардиоз, микобакте-рии — туберкулез и лепру, коринебактерии — дифтерию. Сапрофитные формы актиноми­цетов и нокардиеподобных актиномицетов широко распространены в почве, многие из них являются продуцентами антибиотиков.


Клеточная стенка— прочная, упругая структу­ра, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мем­браной «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она участвует в процессе деления клетки и транспорте мета­болитов, имеет рецепторы для бактериофагов, бактериоцинов и различных веществ. Наиболее толстая клеточная стенка у грамположительных бактерий (рис. 2.4 и 2.5). Так, если толщина клеточной стенки грамотрицательных бактерий около 15—20 нм, то у грамположительных она может достигать 50 нм и более.


Микоплазмы— мелкие бактерии (0,15—1,0 мкм), окруженные только цитоплазматической мембра­ной. Они относятся к классу Mollicutes, содержат стеролы. Из-за отсутствия клеточной стенки мико­плазмы осмотически чувствительны. Имеют раз­нообразную форму: кокковидную, нитевидную, колбовидную. Эти формы видны при фазово-кон-трастной микроскопии чистых культур микоплазм. На плотной питательной среде микоплазмы обра­зуют колонии, напоминающие яичницу-глазунью: центральная непрозрачная часть, погруженная в среду, и просвечивающая периферия в виде круга.

Микоплазмы вызывают у человека атипич­ную пневмонию (Mycoplasma pneumoniae) и поражения мочеполового тракта (М. homi-nis и др.). Микоплазмы вызывают заболева­ния не только у животных, но и у растений. Достаточно широко распространены и непа­тогенные представители.

2.2.2. Структура бактериальной клетки

Структура бактерий хорошо изучена с помо­щью электронной микроскопии целых клеток и их улыратонких срезов, а также других мето­дов. Бактериальную клетку окружает оболочка, состоящая из клеточной стенки и цитоплазма­тической мембраны. Под оболочкой находит­ся протоплазма, состоящая из цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили (рис. 2.3). Некоторые бактерии в неблагоприятных усло­виях способны образовывать споры.


В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (му-реин, мукопептид), составляющий 40—90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бакте­рий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка), молекулы которых представляют собой цепи из 8—50 остатков глицерола и рибитола, соединенных фосфат­ными мостиками. Форму и прочность бакте­риям придает жесткая волокнистая структура многослойного, с поперечными пептидными сшивками, пептидогликана.

Пептидогликан представлен параллельно расположенными молекулами гликана. со­стоящего из повторяющихся остатков N-аце-тилглюкозамина и N-ацетилмурамовой кис­лоты, соединенных гликозидной связью. Эти связи разрывает лизоцим, являющийся аце-тилмурамидазой. Гликановые молекулы со­единены через N-ацетилмурамовую кислоту поперечной пептидной связью из четырех аминокислот (тетрапептида). Отсюда и назва­ние этого полимера — пептидогликан.

Основу пептидной связи пептидогликана гра­мотрицательных бактерий составляют тетрапеп-тиды, состоящие из чередующихся L- и D-ами-нокислот, например: L-аланин — D-глутаминовая кислота — мезо-диаминопимелиновая кислота — D-аланин. У Е. coli (грамотрицательная бактерия) пептидные цепи соединены друг с другом через D-аланин одной цепи и мезо-диаминопимели-


новую кислоту — другой. Состав и строение пеп­тидной части пептидогликана грамотрицательных бактерий стабильны в отличие от пептидоглика­на грамположительных бактерий, аминокислоты которого могут отличаться по составу и после­довательности. Тетрапептиды пептидогликана у грамположительных бактерий соединены друг с другом полипептидными цепочками из 5 остатков


глицина (пентаглицина). Вместо мезо-диамино-пимелиновой кислоты они часто содержат лизин. Элементы гликана (ацетилглюкозамин и аце-тилмурамовая кислота) и аминокислоты тетра-пептида (мезо-диаминопимелиновая и D-глу-таминовая кислоты, D-аланин) являются отли­чительной особенностью бактерий, поскольку отсутствуют у животных и человека.


Способность грамположительных бактерий при окраске по Граму удерживать генциановый фиолетовый в комплексе с йодом (сине-фиоле­товая окраска бактерий) связана со свойством многослойного пептидогликана взаимодейство­вать с красителем. Кроме этого, последующая обработка мазка бактерий спиртом вызывает суживание пор в пептидогликане и тем самым задерживает краситель в клеточной стенке. Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, что обусловлено меньшим количеством пептидогликана (5—10 % массы клеточной стенки); они обесцвечиваются спиртом и при обработке фуксином или сафра­нином приобретают красный цвет.

В состав клеточной стенки грамотрица-тельных бактерий входит наружная мемб­рана, связанная посредством липопротеина с подлежащим слоем пептидогликана (рис. 2.4 и 2.6). Наружная мембрана при элект­ронной микроскопии ультратонких срезов бактерий имеет вид волнообразной трех­слойной структуры, сходной с внутренней мембраной, которую называют цитоплаз-матической. Основным компонентом этих мембран является бимолекулярный (двой­ной) слой липидов.


Наружная мембрана является мозаичной структурой, представленной липополисахари-дами, фосфолипидами и белками. Внутренний слой ее представлен фосфолипидами, а в на­ружном слое расположен липополисахарид (ЛПС). Таким образом, наружная мембрана асимметрична. ЛПС наружной мембраны со­стоит из трех фрагментов:

• липида А — консервативной структуры, практически одинаковой у грамотрицатель-ных бактерий;

• ядра, или стержневой, коровой части (лат. core — ядро), относительно консервативной олигосахаридной структуры;

• высоковариабельной О-специфической цепи полисахарида, образованной повторя­ющимися идентичными олигосахаридными последовательностями.

ЛПС «заякорен» в наружной мембране ли-пидом А, обуславливающим токсичность Л ПС и отождествляемым поэтому с эндотоксином. Разрушение бактерий антибиотиками при­водит к освобождению большого количества эндотоксина, что может вызвать у больного эндотоксический шок. От липида А отходит ядро, или стержневая часть ЛПС. Наиболее постоянной частью ядра ЛПС является кето-дезоксиоктоновая кислота (З-деокси-О-ман-но-2-октулосоновая кислота). О-специфи­ческая цепь, отходящая от стержневой части молекулы ЛПС, обусловливает серогруппу, серовар (разновидность бактерий, выявляе­мая с помощью иммунной сыворотки) опре­деленного штамма бактерий. Таким образом, с понятием ЛПС связаны представления об О-антигене, по которому можно дифферен­цировать бактерии. Генетические изменения могут привести к дефектам, «укорочению» ЛПС бактерий и к появлению в результате этого «шероховатых» колоний R-форм.

Белки матрикса наружной мембраны про­низывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы с от­носительной массой до 700 Да.

Между наружной и цитоплазматической мембраной находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы,


нуклеазы, бета-лактамазы), а также компо­ненты транспортных систем.

При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пеницил­лина, защитных факторов организма и других соединений образуются клетки с измененной (часто шаровидной) формой: протопласты — бактерии, полностью лишенные клеточной стенки; сферопласты — бактерии с частич­но сохранившейся клеточной стенкой. После удаления ингибитора клеточной стенки такие измененные бактерии могут реверсировать, т. е. приобретать полноценную клеточную стенку и восстанавливать исходную форму.

Бактерии сферо- или протопластного ти­па, утратившие способность к синтезу пеп-тидогликана под влиянием антибиотиков или других факторов и способные размно­жаться, называются L-формами (от названия Института им. Д. Листера, где они впервые были изучены). L-формы могут возникать и в результате мутаций. Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабиль­ные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку. L-формы могут образовывать многие возбудители инфекционных болезней.

Цитоплазматическая мембранапри электрон­ной микроскопии ультратонких срезов пред­ставляет собой трехслойную мембрану (2 тем­ных слоя толщиной по 2,5 нм каждый разделе­ны светлым — промежуточным). По структуре (см. рис. 2.5 и 2.6) она похожа на плазмалемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов, с внедренными поверхностными, а также интег­ральными белками, как бы пронизывающими насквозь структуру мембраны. Некоторые из них являются пермеазами, участвующими в транспорте веществ.

Цитоплазматическая мембрана являет­ся динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру. Она окружа­ет наружную часть цитоплазмы бактерий и участвует в регуляции осмотического давле-


ния, транспорте веществ и энергетическом метаболизме клетки (за счет ферментов цепи переноса электронов, аденозинтрифосфатазы и др.).

При избыточном росте (по сравнению с рос­том клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячива-ния в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами. Роль мезосом и внутрицитоплазматических мембран до конца не выяснена. Предполагают даже, что они являются артефактом, возника­ющим после приготовления (фиксации) пре­парата для электронной микроскопии. Тем не менее считают, что производные цитоплаз-матической мембраны участвуют в делении клетки, обеспечивая энергией синтез клеточ­ной стенки, принимают участие в секреции веществ, спорообразовании, т. е. в процессах с высокой затратой энергии.

Цитоплазма занимает основной объем бак­териальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включе­ний и многочисленных мелких гранул — ри­босом, ответственных за синтез (трансля­цию) белков.

Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от SOS-рибосом, характерных для эукариотических клеток. Поэтому некото­рые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукарио­тических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы — 50S и 30S. Рибосомные РНК (рРНК) — консер­вативные элементы бактерий («молекуляр­ные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, a 23S рРНК — в состав большой субъединицы ри­босом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.

В цитоплазме имеются различные включе­ния в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и


зыполняют роль запасных веществ для пита­ния и энергетических потребностей.

Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голу­бым волютин окрашивается в красно-фиоле­товый цвет, а цитоплазма бактерии — в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде ин­тенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризо-ванного неорганического полифосфата. При электронной микроскопии они имеют вид элек­тронно-плотных гранул размером 0,1—1,0 мкм.

Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не име­ет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, пред-ставленная замкнутой в кольцо молекулой ДHK При нарушении деления в ней может сходиться 4 и более хромосом. Нуклеоид выявляется в световом микроскопе после ок-раски специфическими для ДНК методами: по Фельгену или по Романовскому—Гимзе. На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДHK, связанной определенными участками с

цитоплазматической мембраной или мезосо-

мой, участвующими в репликации хромосо­мы (см. рис. 2.5 и 2.6).

Кроме нуклеоида, представленного одной

хромосомой, в бактериальной клетке имеются

вне хромосомные факторы наследственности —

плазмиды (см. разд. 5.1.2.), представляющие

собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь. Капсула

слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бак-терий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпе-чатках из патологического материала. В чис-тых культурах бактерий капсула образуется


реже. Она выявляется при специальных ме­тодах окраски мазка по Бурри—Гинсу, созда­ющих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы.

Капсула состоит из полисахаридов (эк-зополисахаридов), иногда из полипепти­дов; например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, включает большое количество воды. Она препятству­ет фагоцитозу бактерий. Капсула антиген-на: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).

Многие бактерии образуют микрокапсулу — слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроско­пии. От капсулы следует отличать слизь — муко-идные экзополисахариды, не имеющие четких внешних границ. Слизь растворима в воде.

Мукоидные экзополисахариды характерны для мукоидных штаммов синегнойной палоч­ки, часто встречающихся в мокроте больных с кистозным фиброзом. Бактериальные эк­зополисахариды участвуют в адгезии (прили­пании к субстратам); их еще называют глико-


каликсом. Кроме синтеза экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В резуль­тате этого образуются декстраны и леваны.

Капсула и слизь предохраняют бактерии от повреждений, высыхания, так как, явля­ясь гидрофильными, хорошо связывают воду, препятствуют действию защитных факторов макроорганизма и бактериофагов.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоп-лазматической мембраны, имеют большую длину, чем сама клетка (рис. 2.7). Толщина жгутиков 12—20 нм, длина 3—15 мкм. Они со­стоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков — у грамположительных и 2 пары — у грамотри-цательных бактерий). Дисками жгутики при­креплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем — ротором, вра­щающим жгутик. В качестве источника энер­гии используется разность протонных по­тенциалов на цитоплазматической мембране. Механизм вращения обеспечивает протонная АТФ-синтетаза. Скорость вращения жгути­ка может достигать 100 об/с. При наличии у бактерии нескольких жгутиков они начинают синхронно вращаться, сплетаясь в единый пу­чок, образующий своеобразный пропеллер.

Жгутики состоят из белка — флагеллина (от. flagellum — жгутик), являющегося антигеном — так называемый Н-антиген. Субъединицы флагеллина закручены в виде спирали.

Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного виб­риона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих), у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелы­ми металлами, или в световом микроскопе после обработки специальными методами, основанны­ми на протравливании и адсорбции различных






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.