Уничтожение микробов в окружающей среде Для уничтожения микробов (бактерий, вирусов, грибов и простейших) на различных предметах и в материалах, используемых в медицине, в пищевой промышленности и в быту, применяют два способа: стерилизацию и дезинфекцию.
4.4.1. Стерилизация
Стерилизация (от лат. sterilis — бесплодный) предполагает полную инактивацию микробов в объектах, подвергающихся обработке.
Существует три основных метода стерилизации: тепловой, лучевой, химической.
Тепловая стерилизация основана на чувствительности микробов к высокой температуре. При 60 °С и наличии воды происходит денатурация белка, деградация нуклеиновых кислот, липидов, вследствие чего вегетативные формы микробов погибают. Споры, содержащие очень большое количество воды в связанном состоянии и обладающие плотными оболочками, инактивируются при 160—170 °С.
Для тепловой стерилизации применяют, в основном, сухой жар и пар под давлением.
Стерилизацию сухим жаром осуществляют в воздушных стерилизаторах (прежнее название — «сухожаровые шкафы или печи Пастера»). Воздушный стерилизатор представляет собой металлический плотно закрывающийся шкаф, нагревающийся с помощью электричества и снабженный термометром. Обеззараживание материала в нем производят, как правило, при 160 °С в течение 120 мин. Однако возможны и другие режимы: 200 °С - 30 мин, 180 °С - 40 мин.
Стерилизуют сухим жаром лабораторную посуду и другие изделия из стекла, инструменты, силиконовую резину, т. е. объекты, которые не теряют своих качеств при высокой температуре.
Большая часть стерилизуемых предметов не выдерживает подобной обработки, и поэтому их обеззараживают в паровых стерилизаторах.
Обработка паром под давлением в паровых стерилизаторах (старое название — «автоклавы») является наиболее универсальным методом стерилизации.
Паровой стерилизатор (существует множество его модификаций) — металлический ци-
линдр с прочными стенками, герметически закрывающийся, состоящий из водопаровой и стерилизующей камер. Аппарат снабжен манометром, термометром и другими контрольно-измерительными приборами. В автоклаве создается повышенное давление, что приводит к увеличению температуры кипения (табл. 4.1).
Таблица 4. (.Зависимость темпера от атмосферного давления
| гуры кипения волы
| 0,5 атм
| 80 "С
| 1 атм
| 100 РС
| 2 атм
| 121 "С
| Затм
| 136'С
| Поскольку кроме высокой температуры на микробы оказывает воздействие и пар, споры погибают уже при 120 "С. Наиболее распространенный режим работы парового стерилизатора: 2 атм — 121 °С — 15—20 мин. Время стерилизации уменьшается при повышении атмосферного давления, а следовательно, и температуры кипения (136 °С — 5 мин). Микробы погибают за несколько секунд, но обработку материала производят в течение большего времени, таккак, во-первых, высокая температура должна быть и внутри стерилизуемого материата и. во-вторых, существует так называемое поле безопасности (рассчитанное на небольшую неисправность автоклава).
Стерилизуют в автоклаве бульшую часть предметов: перевязочный материал, белье, коррозионно-устойчивые металлические инструменты, питательные среды, растворы, инфекционный материал и т. д.
Эффективность стерилизации в паровом стерилизаторе зависит от правильного выбора упаковки, соблюдения правил загрузки для свободного прохождения пара (например, перевязочный материал укладывают в камеру параллельно движению пара), плотности загрузки камеры и других факторов.
Одной из разновидностей тепловой стерилизации является дробная стерилизация, которую применяют для обработки материалов, не выдерживающих температуру выше 100 "С, например, для стерилизации питательных сред с углеводами, желатина. Их нагревают в водяной бане при 80 °С в течение 30—60 мин, в
результате чего вегетативные формы погибают. Процедуру повторяют три дня подряд, в промежутках между манипуляциями питательные среды выдерживают в термостате, что способствует прорастанию спор. Иногда эту процедуру производят в автоклаве при давлении 0,5 атм.
В настоящее время применяют еще один метод тепловой стерилизации, предназначенный специально для молока — ультравысокотемпературный (УВТ): молоко обрабатывают в течение нескольких секунд при 130—150 С.
Тепловая стерилизация — наиболее надежный, экологически безопасный, дешевый и хорошо контролируемый метод. Однако его невозможно применять тогда, когда предметы повреждаются от высокой температуры. В этих случаях прибегают к другим методам.
Химическая стерилизация предполагает использование токсичных газов: оксида этилена, смеси ОБ (смеси оксида этилена и бромистого метила в весовом соотношении 1:2,5) и формальдегида. Эти вещества являются ал-килирующими агентами, их способность в присутствии воды инактивировать активные группы в ферментах, других белках, ДНК и РНК приводит к гибели микроорганизмов.
Стерилизация газами осуществляется в присутствии пара при температуре от 18 до 80 °С в специальных камерах. В больницах используют формальдегид, в промышленных условиях — оксид этилена и смесь ОБ.
Перед химической стерилизацией все изделия, подлежащие обработке, должны быть высушены.
Этот вид стерилизации небезопасен для персонала, для окружающей среды и для пациентов, пользующихся простерилизованны-ми предметами (большинство стерилизующих агентов остается на предметах).
Однако существуют объекты, которые могут быть повреждены нагреванием, например, оптические приборы, радио- и электронная аппаратура, предметы из нетермостойких полимеров, питательные среды с белком и т. п., для которых пригодна только химическая стерилизация. Например, космические корабли и спутники, укомплектованные точной аппаратурой, для их деконтаминации обезвреживают газовой смесью (оксид этилена и бромистого метила).
В последнее время в связи с широким распространением в медицинской практике изделий из термолабильных материалов, снабженных оптическими устройствами, например эндоскопов, стали применять обезвреживание с помощью химических растворов. После очистки и дезинфекции прибор помещают на определенное время (от 45 до 60 мин) в стерилизующий раствор, затем прибор должен быть отмыт стерильной водой. Для стерилизации и отмывки используют стерильные емкости с крышками. Простерилизованное и отмытое от стерилизующего раствора изделие высушивают стерильными салфетками и помещают в стерильную емкость. Все манипуляции проводят в асептических условиях и в стерильных перчатках. Хранят эти изделия не более 3 суток.
Лучевая стерилизация осуществляется либо с помощью гамма-излучения, либо с помощью ускоренных электронов.
Источником гамма-излучения, получаемого в специальных гамма-установках, являются радиоактивные изотопы, например 60Со, 137Cs. Для получения электронного излучения применяют ускорители электронов (с высоким уровнем энергии — 5-10 MeV).
Гибель микробов под действием гамма-лучей и ускоренных электронов происходит прежде всего в результате повреждения нуклеиновых кислот. Причем микробы более устойчивы к облучению, чем многоклеточные организмы.
Лучевая стерилизация является альтернативой газовой стерилизации в промышленных условиях, и применяют ее также в тех случаях, когда стерилизуемые предметы не выдерживают высокой температуры. Лучевая стерилизация позволяет обрабатывать сразу большое количество предметов (например, одноразовых шприцев, систем для переливания крови). Благодаря возможности широкомасштабной стерилизации, применение этого метода вполне оправданно, несмотря на его экологическую опасность и неэкономичность.
Еще одним способом стерилизации является фильтрование. Фильтрование с помощью различных фильтров (керамических, асбестовых, стеклянных), а в особенности мембранных ультрафильтров из коллоидных растворов нитроцел-
люлозы или других веществ позволяет освободить жидкости (сыворотку крови, лекарства) от бактерий, грибов, простейших и даже вирусов. Для ускорения процесса фильтрации обычно создают повышенное давление в емкости с фильтруемой жидкостью или пониженное давление в емкости с фильтратом.
В настоящее время все более широкое применение находят современные методы стерилизации, созданные на основе новых технологий, с использованием плазмы, озона.
Микробиологический контроль объектов, подвергшихся стерилизации, в повседневной практике не производится. Его заменяет косвенный контроль — контроль работы стерилизаторов, который осуществляется несколькими способами. Во-первых, персонал должен строго соблюдать и документировать установленный режим стерилизации, который обеспечивает гибель микробов. Во-вторых, косвенно о поддержании определенной температуры можно судить по изменению окраски химических индикаторов (либо индикаторных бумажек, либо порошков, жидкостей — бензойной кислоты, мочевины, запаянных в ампулы), которые помещают на поверхности и в глубине стерилизуемого объекта. В-третьих, должен регулярно проводиться технический контроль аппаратуры соответствующей службой. В-четвертых, три раза в году осуществляют биологический контроль, помещая внутрь стерилизуемых предметов биотесты, приготовленные из термоустойчивых бацилл Вас. stearothermophilus ВКМ-718.
Для проведения микробиологического контроля производят посев кусочков материала, смывов с предметов, подвергшихся стерилизации, на среды, позволяющие обнаружить аэробные и анаэробные бактерии, грибы (сахарный бульон, тиогликолевую среду, среду Сабуро). Отсутствие роста после 14 дней инкубации в термостате свидетельствует о стерильности предмета. Более тщательный контроль стерильности осуществляют в промышленных условиях, отбирая случайным методом некоторое количество образцов.
После процедуры стерилизации должна сохраняться стерильность, которую поддерживают с помощью упаковки: полимерной плен-
ки, бумаги, фольги, биксов, металлических пеналов и др.
Существует общий стандарт для всех видов стерилизации, принятый Европейской Фармакопеей в 1983 г.: после завершения стерилизации на лечебном материале может оставаться некоторое количество жизнеспособных микроорганизмов — 1 из 10^6.
4.4.2. Дезинфекция
Дезинфекция(от франц. приставки des, обозначающей удаление, уничтожение инфекционного начала) — процедура, предусматривающая обработку загрязненного микробами предмета с целью их уничтожения до такой степени, чтобы они не смогли вызвать инфекцию при использовании данного предмета. Как правило, при дезинфекции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.
Стерилизация — лучший способ обеззараживания. Однако, если отсутствует возможность подвергнуть предмет стерилизации, проводится дезинфекция. Например, нельзя простерилизо-вать бокс, в котором ведутся работы с заразным материалом, операционный стол, руки хирурга или оптиковолоконные микроскопы.
После дезинфекции, в отличие от стерилизации, нет необходимости защищать продезинфицированный материал от попадания микробов извне. До стерилизации предмет необходимо тщательно отчистить от грязи, крови, химических веществ (в том числе и лекарств) и вымыть, чтобы сократить количество микробов на нем. Дезинфекция нередко выполняется перед процедурой чистки для обеспечения безопасности медперсонала.
Различают три основных метода дезинфекции: тепловой, химический, УФ-облучение. Выбор того или иного метода также зависит от дезинфицируемого материала.
Тепловая дезинфекция. Очень эффективным является действие горячей воды и насыщенного пара. Рекомендуется следующее время воздействия: при 80 °С — 10 мин, при 85 °С — 3 мин, при 90 °С — 1 мин. При этом режиме
погибают все вегетативные формы бактерий и большинство вирусов. Температура 100 С в течение 5 мин убивает все вегетативные формы бактерий и все вирусы.
При добавлении в воду 2 % натрия гидрокарбоната (NaHC03) погибают и споры. Кроме того, добавление соды имеет дополнительные преимущества: сода растворяет белки и жиры, которые могут находиться на поверхности предмета, предупреждает коррозию инструментов и оседание на них кальция. Подобным образом можно обрабатывать инструменты, иглы, шприцы и т. д.
Более удобным является применение автоматических моечных машин, в которых предметы сначала промываются в холодной воде, затем — в теплой с детергентом, далее — в чистой и, наконец, дезинфицируются в дистиллированной воде при 90 °С.
Обычные процессы стирки белья, приготовление пищи и кипячение питьевой воды являются примером использования дезинфекции в быту.
Для дезинфекции применяют также сухое тепло, например, прокаливание.
Тепловая дезинфекция — это единственный метод, который не вызывает загрязнения окружающей среды; кроме того, он является наиболее эффективным и дешевым.
Разновидностью тепловой дезинфекции является пастеризация — метод, созданный Л. Пастером и применяемый для обработки в основном молока, а также соков, вина и пива. При используемом обычно режиме — 60—70 °С в течение 20—30 мин — погибает большинство вегетативных форм бактерий (особенно важно уничтожение бруцелл и Mycobacterium bovis, которые могут находиться в молоке), но сохраняется часть энтерококков, молочнокислых бактерий и споры. Поэтому пастеризованное молоко помещают на холод для предотвращения и прорастания спор и размножения бактерий.
Химическая дезинфекция проводится с помощью различных дезинфицирующих веществ. Дезинфектанты действуют, например, растворяя липиды клеточных оболочек (детергенты) или разрушая белки и нуклеиновые кислоты (денатураты, оксиданты). Активность каждого из дезинфектантов неодинакова для раз-
личных микроорганизмов и зависит от температуры, рН и прочих условий.
В качестве контрольных микроорганизмов для изучения действия дезинфектантов используют S. typhi и S. aureus.
Обеззараживанию с помощью данного метода подлежат, например, поверхность операционного стола, стены процедурного кабинета, кожа, некоторые инструменты — все то, что невозможно обработать теплом. Еще одним примером химической дезинфекции является хлорирование воды.
Использование большинства дезинфицирующих веществ опасно для медперсонала, они загрязняют окружающую среду, многие из них дорогостоящи.
Ультрафиолетовое облучение (лучи с длиной волны 200—400 нм) производится с помощью специальных бактерицидных ламп (настенных, потолочных, передвижных и др.) для обеззараживания воздуха, различных поверхностей в операционных, перевязочных, микробиологических лабораториях, предприятиях пищевой промышленности и т. д. Действие ультрафиолетовых лучей приводит к разрушению ДНК микробов в результате образования тиминовых димеров.
Очень незначительна роль механической дезинфекции: проветривания, вентиляции, обработки пылесосом и т. п.
Различают профилактическую дезинфекцию в эпидемическом очаге, которая осуществляется с целью предупреждения распространения различных болезней. При возникновении эпидемического очага проводят текущую (во время вспышки) и заключительную (после ее окончания) дезинфекцию; подобные процедуры проводятся как в медицинских учреждениях, так и за их пределами.
4.4.3. Асептика и антисептика
Для профилактики внутрибольничных, и в особенности хирургических, инфекций применяют асептику и антисептику.
Асептика, основоположником которой является Д. Листер (1867), — это комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для
Зорьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.
Асептика включает: стерилизацию и сохранение стерильности инструментов, перевязочного материала, операционного белья, перчаток и всего, что приходит в соприкосновение с раной; дезинфекцию рук хирурга, операционного поля, аппаратуры, операционной и других помещений, применение специальной одежды, масок. К мерам асептики относится также планировка операционных (этаж, боксирование, вентиляция, кондиционирование воздуха и т. п.).
Методы асептики находят также применение в микробиологических производствах, на предприятиях пищевой промышленности.
Антисептика — совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса. Первые элементы антисептики были предложены И. Земмельвейсом в 1847 г.
Антисептика включает различные методы: механические (удаление инфицированных некро-тизированных тканей, инородных тел и т.д.), физические (дренирование ран, введение тампонов, наложение гигроскопических повязок), химические (применение антисептиков), биологические (использование протеолитических ферментов для лизиса нежизнеспособных клеток, применение бактериофагов, антибиотиков). Обычно применяют комплекс этих методов.
Санитарная микробиология
Санитарная микробиология — раздел медицинской микробиологии, изучающий микроорганизмы, содержащиеся в окружающей среде и способные оказывать неблагоприятное воздействие на состояние здоровья человека. Она разрабатывает микробиологические показатели гигиенического нормирования,
методы контроля за эффективностью обез- зараживания объектов окружающей среды, а также выявляет в объектах окружающей сре ды патогенные, условно-патогенные и сани- тарно-показательные микроорганизмы.
Обнаружение патогенных микроорганизмов позволяет дать оценку эпидемиологической
ситуации и принять соответствующие меры по борьбе и профилактике инфекционных заболеваний.
Условно-патогенные микроорганизмы способны вызывать гнойно-воспалительные процессы в ослабленном организме. Кроме того, они могут попадать в продукты питания, быстро размножаться с накоплением большого количества микробных клеток и их токсинов, вызывая у людей пищевые отравления микробной этиологии.
Санитарно-показательные микроорганизмы используют в основном для косвенного определения возможного присутствия в объектах окружающей среды патогенных микроорганизмов. Их наличие свидетельствует о загрязнении объекта выделениями человека и животных, так как они постоянно обитают в тех же органах, что и возбудители заболеваний, и имеют общий путь выделения в окружающую среду. Например, возбудители кишечных инфекций имеют общий путь выделения (с фекалиями) с такими санитарно-показатель-ными бактериями, как бактерии группы кишечной палочки — БГКП (в эту группу, кроме кишечной палочки, входят сходные по свойствам бактерии родов Citrobacter, Enterobacter, Klebsiella), энтерококки, клостридии перф-рингенс. Возбудители воздушно-капельных инфекций имеют общий путь выделения с бактериями (кокками), постоянно обитающими на слизистой оболочке верхних дыхательных путей, выделяющимися в окружающую среду (при кашле, чиханье, разговоре), поэтому в качестве санитарно-показательных бактерий для воздуха закрытых помещений предложены гемолитические стрептококки и золотистые стафилококки. Санитарно-пока-зательные микроорганизмы должны отвечать следующим основным требованиям:
— должны обитать только в организме людей или животных и постоянно обнаруживаться в их выделениях;
— не должны размножаться или обитать в почве и воде;
— сроки их выживания и устойчивость к различным факторам после выделения из организма в окружающую среду должны быть равными или превышать таковые у патогенных микробов;
—их свойства должны быть типичными и легко выявляемыми для их дифференциации;
—методы их обнаружения и идентификации должны быть простыми, методически и экономически доступными;
—должны встречаться в окружающей среде в значительно больших количествах, чем патогенные микроорганизмы;
—в окружающей среде не должно быть близко сходных обитателей — микроорганизмов.
Кроме определения патогенных, условно-патогенных и санитарно-показательных микроорганизмов, в практике санитарно-мик-робиологических исследований используется определение общего микробного числа, т. е. общего количества микроорганизмов в определенном объеме или определенной массе исследуемого материала (вода, почва, продукты питания, лекарственная форма и др.).
4.5.1. Микробиологический контроль почвы, воды, предметов обихода
Загрязненность почвы, воды, воздуха и других объектов определяется по общей микробной обсемененности и обнаружению санитарно-показательных микроорганизмов — индикаторов наличия выделений человека или животных. В воде регистрируют кишечную палочку, БГКП (колиформные палочки), энтерококк, стафилококки; в почве — кишечную палочку, БГКП (колиформные палочки), клост-ридии перфрингенс, термофилы; на предметах обихода — БГКП (колиформные палочки), золотистый стафилококк, энтерококк.
На основании количественного выявления этих санитарно-показательных бактерий вычисляются индекс БГКП (число БГКП в 1 л воды), перфрингенс-титр, титр энтерококка и г. д. Так. например, пир энтерококка воды— это наименьшее количество воды, в котором определяется энтерококк.
К бактериям группы кишечной палочки относят грамотрицательные палочки, сбраживающие с образованием кислоты и газа лактозу или глюкозу при температуре 37°С в течение 24—48 ч и не обладающие оксидазной активностью. Наиболее часто этот показатель
применяют как индикатор фекального загрязнения воды. Другой сходный показатель фекального загрязнения — общие колиформные бактерии: грамотрицательные, оксида-заотрицательные палочки, ферментирующие лактозу или маннит (глюкозу) с образованием альдегида, кислоты и газа при температуре 37°С в течение 24 часов. Вместо последнего термина предлагается использовать термин «бактерии семейства Enterobacteriaceae», так как все бактерии этого семейства имеют индикаторное значение. К бактериям семейства Enterobacteriaceae относятся грамотрицательные, оксидазаотрицательные палочки, растущие на лактозосодержащих средах типа среды Эндо и ферментирующие глюкозу до кислоты и газа при температуре 37°С в течение 24 часов; колиформные бактерии (палочки).
При бактериальном загрязнении воды свыше допустимых норм следует провести дополнительное исследование на наличие бактерий — показателей свежего фекального загрязнения. К таким бактериям относят термотолерантные колиформные бактерии, фекальные кишечные палочки, ферментирующие лактозу до кислоты и газа при температуре 44 °С в течение 24 часов и не растущие на цитратной среде. О свежем фекальном загрязнении свидетельствует также выявление энтерококка. На давнее фекальное загрязнение указывают отсутствие БГКП и наличие определенного количества клостридии перфрингенс, т. е. наиболее устойчивых споро-образующих бактерий.
В соответствии с нормативными документами регламентируются следующие нормативы микробиологических показателей питьевой воды при централизованном водоснабжении:
1. Общее микробное число водыне должно превышать 100 микробов в 1 мл исследуемой воды;
2. Общие колиформные бактериидолжны отсутствовать в 100 мл исследуемой воды;
3. Термотолерантные колиформные бактериидолжны отсутстовать в 100 мл исследуемой воды;
4. Колифагине должны определяться в 100 мл исследуемой воды (учет по бляшкооб-разующим единицам);
5. Споры сульфитредуцирующих клостридиине должны определяться в 20 мл исследуемой воды;
6. Цисты лямблийне должны определяться в 50 мл исследуемой воды.
Кроме того, загрязненность воды оценивается по обнаружению патогенных микробов с фекально-оральным механизмом передачи (энтеровирусы, энтеробактерии, холерные вибрионы и др.).
Оценка фекального загрязнения почвы и его давности проводится по индексу БГКП (количество БГКП в 1 г почвы), перфрин-генс-титру (наименьшее количество почвы, в котором обнаруживается Clostridium реr-fringens), а иногда и по титру энтерококков. Параллельно определяется микробное число почвы. Загрязненность почвы навозом и компостом оценивается по титру термофилов — бактерий, вырастающих на мясо — пептон-ном агаре при 60 °С в течение 24 часов.
Существуют следующие критерии оценки степени загрязнения почвы:
1. Титр БГКП и перфрингенс-титрдля сильно загрязненных почв — соответственно 0,009 и ниже, 0,00009 и ниже; для чистых почв — коли-титр 1,0 и выше, перфрингенс-титр — 0,01 и выше.
2. Количество термофилов(на 1 г почвы; культивирование при температуре 60°С): в чистых почвах — 100-1000, в загрязненных— 1000—10 000, а в сильно загрязненных— 100 000-400 000 колониеобразующих единиц (КОЕ).
Санитарный надзор за состоянием объектов общественного питания, аптек, лечебных и детских учреждений осуществляется исследованием смывов с рук персонала, посуды, поверхности столов, оборудования и др. Смыв высевают на различные питательные среды для определения микробной обсемененности, наличия БГКП, патогенных энтеробактерий, золотистого стафилококка, энтерококка, грибов рода Candida. Отдельно можно выявлять энтеровирусы.
4.5.2. Микробиологический контроль воздуха
Микробиологический контроль возду-\а проводится с помощью методов естественной или принудительной седиментации лкробов. Естественная седиментация (по методу Коха) проводится в течение 5—10 мин путем осаждения микробов на поверхность твердой питательной среды в чашке Петри. Принудительная седиментация микробов
осуществляется путем «посева» проб воздуха на питательные среды с помощью специальных приборов (импакторов, импинджеров, фильтров). Импакторы — приборы для принудительного осаждения микробов из воздуха на поверхность питательной среды (прибор Кротова, пробоотборник аэрозоля бактериологический и др.). Импинджеры — приборы, с помощью которых воздух проходит через жидкую питательную среду или изотонический раствор хлорида натрия.
Санитарно-гигиеническое состояние воздуха определяется по следующим микробиологическим показателям:
1. Общее количество микроорганизмовв 1 м3 воздуха (так называемое общее микробное число, или обсемененность воздуха) — количество колоний микроорганизмов, выросших при посеве воздуха на питательном агаре в чашке Петри в течение 24 ч при 37 °С, выраженное в КОЕ;
2. Индекс санитарно-показательных микробов—количество золотистого стафилококка и гемолитических стрептококков в 1 м3 воздуха. Эти бактерии являются представителями микрофлоры верхних дыхательных путей и имеют общий путь выделения с патогенными микроорганизмами, передающимися воздушно-капельным путем. Появление в воздухе спорообразу-ющих бактерий — показатель загрязненности воздуха микроорганизмами почвы, а появление грамотрицательных бактерий — показатель возможного антисанитарного состояния.
Для оценки воздуха лечебных учреждений можно использовать данные из официально рекомендованных нормативных документов (табл. 4.2).
4.5.3. Микробиологический контроль продуктов питания
Санитарно-микробиологическое исследование продуктов питания проводится в плановом порядке и по эпидемиологическим показаниям. В плановом порядке проводятся исследования по следующим показателям:
1. Общее микробное число (обсеменение).Определяют МАФАМ — мезофилъные и факультативно анаэробные микроорганизмы, выросшие в виде видимых колоний на плотной питательной среде после инкубации при 37°С в течение 24 ч.
Таблица 4.2. Допустимые уровни бактериальной обсемененности воздуха в некоторых отделениях стационаров
| Место отбора проб
| Условия работы
| Общее количество КОБ в 1 м3 воздуха
| Количество золотистого стафилококка в 1 м^3 воздуха
| Количество грамот-рицательных бактерий в 1 м^3 воздуха
| Операционные (обеспеченные 10— 20-кратным и более воздухообменом)
| Подготовленные к работе
| Не более 100
| Не должно быть
| Реанимационные отделения (палаты)
|
| Не более 1000
| Не более4
| Не должно быть
| Процедурная
| До начала работы
| Не более 50
| Не должно быть
|
|
Во время работы
| Не более 2000
| Не более 1—2
|
| 2. Обнаружение санитарно-показательных бактерийв продуктах питания — кишечной палочки, БГКП, энтерококка, золотистого стафилококка, бактерий группы протея, клостри-дий (сульфит-восстановителей).
3. Обнаружение сальмонелл,например, при исследовании продуктов из мяса (наряду с другими показателями).
По эпидемиологическим показаниям продукты исследуют на наличие патогенных и условно-патогенных микроорганизмов — возбудителей пищевых отравлений микробной этиологии.
Общее микробное обсеменение не определяют в кисломолочных продуктах — твороге, сметане, кефире и других, содержащих специфическую микрофлору (молочнокислые стрептококки, лактобактерии и др.). В этих продуктах исследуют молочнокислую микрофлору бактериоскопическим изучением мазков из них, окрашенных метиленовым синим. Отсутствие характерной молочнокислой микрофлоры и наличие посторонней микрофлоры (плесневые грибы, дрожжи и др.) указывают на неудовлетворительное приготовление, нарушение технологии или неправильное хранение продуктов. Исключение составляют кефир, кумыс, в которых при микроскопическом исследовании обязательно выявляются в поле зрения 2-5 дрожжевых клеток, поскольку эти продукты есть результат комби-
нированного брожения — молочнокислого и спиртового.
Некоторые ориентировочные микробиологические показатели приведены в табл. 4.3.
Консервированные продукты питания не должны содержать кишечную палочку, протей и патогенные микробы. При исследовании таких пищевых продуктов, как консервы овощные, рыбные, мясные, предусмотрено:
1. Обнаружение аэробных микроорганизмов.
2. Обнаружение анаэробных микроорганизмов.
3. Определение ботулинических экзотоксинов.
4.5.4. Микробиологический контроль лекарственных средств
Обсеменение лекарственного сырья возможно на всех этапах его заготовки и при хранении. Активному размножению микроорганизмов способствует увлажнение растений и растительного сырья. Размножившиеся микроорганизмы вызывают изменение фармакологических свойств препаратов, полученных из лекарственных растений. Микроорганизмы могут также попадать из окружающей среды, от людей и обсеменять лекарственные препараты в процессе их изготовления из растительного сырья. Для соблюдения санитарного режима изготовления лекарственных препаратов проводят санитарно-микробиологический контроль объектов окружающей среды предприятия
Таблица 4. 3. Ориентировочные микробиологические показатели некоторы:
|
| Продукт
| Общее микробное число
| Наличие БГКП (коли-титр)
| Молоко, сливки, пахта
| 75 000-150000
| Не менее 3
| Сухое молоко
| Не более 2500
| Не допускается
| Кефир
| Не исследуется
| Не менее 0,3
| Полуфабрикаты из рубленого мяса (котлеты шницели и яр.)
| Не более 1000
| Не допускается
| Жареная и печеная рыба
| Не более 1000
| Не должны быть в 10 г продукта
| и каждой серии выпускаемой лекарственной формы. Лекарственные средства для парентерального введения в виде инъекций, глазные капли, мази, пленки и др., в отношении которых имеются соответствующие указания в нормативно-технической документации, должны быть стерильными. Контроль стерильности лекарственных средств проводят путем посева на тиогликолевую среду для выявления различных бактерий, в том числе анаэробов; при посеве на среду Сабуро выявляют грибы, главным образом рода Candida. Стерильность лекарственных средств с антимикробным действием определяют путем мембранной фильтрации: фильтр пос-лe фильтрации исследуемого препарата делят на части и вносят для подращивания задержанных микроорганизмов в жидкие питательные среды. При отсутствии роста препарат считается стерильным.
Лекарственные средства, не требующие стерилизации, обычно содержат микроорганизмы. Поэтому их испытывают на микробиологическую чистоту: проводят количественное определение жизнеспособных бак-терий и грибов в 1 г или 1 мл препарата, а
также выявляют микроорганизмы (бактерии семейства энтеробактерий, синегнойная палочка, золотистый стафилококк), которые не должны присутствовать в нестерильных лекарственных средствах. В 1 г или 1 мл лекарственного сырья для приема внутрь должно быть не более 1000 бактерий и 100 дрожжевых и плесневых грибов; должны отсутствовать кишечные палочки и сальмонеллы. В случаях местного применения (полость уха, носа, ин-травагинальное использование) количество микроорганизмов не должно превышать 100 (суммарно) микробных клеток на 1 г или 1 мл препарата при отсутствии энтеробактерий, синегнойной палочки и золотистого стафилококка. В таблетированных препаратах не должно быть патогенной микрофлоры, а общая обсемененность не должна превышать 10 тыс. микробных клеток на таблетку. Средства гигиены полости рта, зубные пасты и элек-сиры, жевательные резинки не должны содержать синегнойную палочку, бактерии семейства Enterobactericeae, плесневые грибы и грибы рода Candida; микробное число должно быть не более 100 КОЕ/г.
ГЛАВА 5. ГЕНЕТИКА МИКРОБОВ
Строение генома бактерий
Бактериальный геном состоит из генетических элементов, способных к самостоятельной репликации (син. воспроизведение), т. е. репликонов. Репликонами являются бактериальная хромосома и плазмиды.
Наследственная информация хранится у бактерий в форме последовательности нук-леотидов ДНК, которые определяют последовательность аминокислот в белке (строение ДНК изложено в разд. 2.1 и показано на рис. 2.1). Каждому белку соответствует свой ген, т. е. дискретный участок на ДНК, отличающийся числом и специфичностью последовательности нуклеотидов.
5.1.1. Бактериальная хромосома Бактериальная хромосома представлена одной
двухцепочечной молекулой ДНК кольцевой формы. Размеры бактериальной хромосомы у различных представителей царства Procaryotae варьируют от 3 х 10^8 до 2,5 х 109 Да, что соответствует 3,2 х 106 нуклеотидных пар (н.п.). Например, у Е. coli бактериальная хромосома содержит 5х10^6 н.п. Для сравнения: размеры ДНК вирусов составляют порядка 103 н.п., дрожжей — 107 н.п., а суммарная длина хромосомных ДНК человека составляет 3 х 109 н.п. Бактериальная хромосома формирует компактный нуклеоид бактериальной клетки. Бактериальная хромосома имеет гаплоидный набор генов. Она кодирует жизненно важные для бактериальной клетки функции.
5.1.2. Плазмиды бактерий
Плазмиды представляют собой двухце-почечные молекулы ДНК размером от 10^3
до 10^6 н.п. Они кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преимущества при попадании в неблагоприятные условия существования.
Среди фенотипических признаков, сообщаемых бактериальной клетке плазмидами. можно выделить следующие:
1) устойчивость к антибиотикам;
2) образование колицинов;
3) продукция факторов патогенности;
4) способность к синтезу антибиотических веществ;
|