Пиши Дома Нужные Работы

Обратная связь

Проекции дипольного момента и напряженности поля волны на ось x

На следующем рисунке изображен диполь, силы действующие на его полюсы, ось x и вектор электрического поля волны в момент времени t = 0:

Как видно из рисунка, проекция дипольного момента (21.1.1.2.1) на ось x:

.

Проекция напряженности электрического поля световой волны на ось x:

,

знак минус означает, что в начальный момент времени вектор направлен против оси x. Напомним, что в нашем уравнении движения (21.1.1.2.2) сила, действующая на электрон, при t = 0 имеет положительный знак.

21.1.1.3. Выражение для n2

Подставим в формулу, полученную в (21.1.1.2) для n2, выражения px(t), Nx(t)с использованием для x(t) решения уравнения движения, записанное в (21.1.1.2.2):

При усреднении по времени дает . Подставляя выражение для амплитуды A-колебаний электрона (из 21.1.1.2.1) получим:

;
.

21.1.1.4. Анализ зависимости n(ω)

Как показывает опыт затухание оказывает незначительное влияние на движение оптического электрона, если частота световой волны не равна ω0 - собственной частоте колебаний электрона. Точнее, затуханием можно пренебречь, если

.

При выполнении этого условия

.

В первом случае (если ω < ω0) колебания электрона происходят в фазе с вынуждающей силой, Cosφ = 1. Во втором (ω > ω0) - в противофазе, Cosφ = -1.

Учитывая это можно записать упрощенное выражение для n2, применимое для частот далеких от ω0:

.

Здесь знак второго слагаемого при ω < ω0 положителен, при ω > ω0 второе слагаемое отрицательное.

Для ω = ω0 φ = π/2, а Cosφ = 0, тогда, возвращаясь к исходному выражению для n2 (20.1.1.3), получим:

n = 1.

21.1.1.5. График зависимости n(ω)

Проведенный анализ позволяет изобразить примерный вид графика зависимости показателя преломления от циклической частоты:



На участках AB и DE n растет с ростом ω - дисперсия нормальная. На участке BCD дисперсия аномальная - с ростом показатель преломления падает.

21.1.1.2.6. График зависимости n(λ)

Так как длина волны λ и циклическая частота величины, связанные обратно пропорциональной зависимостью (15.1.8), то график n(λ), соответствующий приведенному выше графику, будет иметь примерно следующий вид:

.

Учет колебаний с другими собственными частотами

В веществе могут быть заряды, колеблющиеся с различными собственными частотами ω0 и затуханиями βi, величины зарядов qi могут быть разными, разными могут быть и их массы. С учетом этого формула для n2 примет следующий вид:

.

График зависимости n(ω) при наличии двух собственных частот (N = 2) будет иметь следующий вид:

Опыт подтверждает такой ход зависимости n(ω).

Групповая скорость

На графике зависимости n(λ), изображенном в 21.1.1, есть участок CDE, где n < 1. Это означает, что фазовая скорость световой волны:

на участке CDE.

На первый взгляд это утверждение противоречит теории относительности (см. раздел 8), согласно которой скорость света в вакууме является максимально возможной скоростью передачи сигнала. Но монохроматическая волна не может передавать сигнал: она никогда не кончается и нигде не начинается. Такая волна состоит из бесконечно повторяющихся одинаковых горбов и впадин, ничем не отличающихся друг от друга. Передавать сигнал можно только ограниченным в пространстве и во времени кусочком электромагнитной волны - электромагнитным импульсом. Такой импульс (группа волн) можно представить в виде наложения бесконечного числа монохроматических волн с разными частотами и амплитудами (интеграл Фурье).

Мы, для простоты будем представлять импульс (группу волн) совокупностью двух близких по частоте монохроматических волн:

Здесь мы во втором сомножетеле пренебрегаем величинами Δω и Δkпо сравнению с ω и k.

Выражение стоящее в квадратных скобках медленно меняется в пространстве и во времени, т. к. Δω << ω, Δk << k (сравните с 14.3.3). Обозначим его буквой A,

.

Тогда можно считать, что наш импульс (группа волн) - это монохроматическая волна с медленно меняющейся амплитудой:

.

Будем следить за распространением в пространстве точки xm, где амплитуда A максимальна. Назовем групповой скоростью u скорость перемещения в пространстве точки с координатой xm:

.

Максимуму A соответствует обращение в ноль фазы косинуса в выражении для A, т.е.

.

Возьмем производную по времени от этого выражения, в результате получим:

,

откуда

.

Переходя к пределу, получим окончательное выражение для групповой скорости:

.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.