Пиши Дома Нужные Работы

Обратная связь

Понятие определенного интеграла

Интегральное исчисление

1.1 Первообразная, неопределенный интеграл

Определение. Функция F(x) называется первообразной функции f(x) на множестве X, если для всех .

Выражение F(x)+C представляет собой семейство всех первообразных функции f(x). (C=const).

Определение. Если F(x) – одна из первообразных функции f(x), то выражение F(x)+C называется неопределенным интегралом.

Обозначается .

Простейшие свойства.

1)

2)

3)

4)

Таблица основных интегралов

1) . 10) .
2) . 11) .
3) . 12) .
4) . 13) .
5) . 14) .
6) . 15) .
7) . 16) .
8) . 17) .
9) .  

 

В частности:

; ; .

Из определения и свойств неопределенного интеграла следует, что дифференцирование и интегрирование являются взаимно обратными действиями: производная правой части в каждой формуле равна подынтегральной функции. Проверим, например, формулу 2.

Примеры:

1) ;

2) .

Методы интегрирования

Метод подведения под знак дифференциала (устная замена переменной)

Если относительно данной переменной интеграл не является табличным, то в некоторых случаях его можно привести к табличному относительно новой переменной с помощью подведения под знак дифференциала нужной функции.

При этом удобно пользоваться следующими формулами, которые получаются из формул дифференцирования при прочтении их в обратном порядке:

, n≠-1

Примеры (см. задание 1а)

1) ;

2)

3)

Метод письменной замены переменной (подстановки)

План

1. Вводим новую переменную (подстановку)

2. Дифференцируем подстановку.

3. Вводим новую переменную в подынтегральное выражение.

4. Вычисляем интеграл.



5. Возвращаемся к старой переменной.

Примеры (см. задание 1а):

1)

.

2)

.

3) .

Метод интегрирования по частям

Этот метод применяют для интегралов вида:

а) , , ;

б) , , , , ;

в) , ;

где - многочлен.

Формула интегрирования по частям имеет вид:

.

1) Для интегралов типа а) принимают U =P(x), все остальное равно dV.

2) Для интегралов типа б) принимают dV =P(x)dx.

3) для интегралов типа в) за U принимают любую функцию, метод применяют дважды.

Примеры (см. задание 1б):

1) ;

2)

;

3)

.

4) можно решение записать иначе:

Получили первоначальный интеграл, обозначим его за y

;

;

+С.

Определенный интеграл

Задача о площади.

Вычислим площадь плоской фигуры, ограниченной графиком непрерывной, неотрицательной функции y=f(x), прямыми x=a, x=b, отрезком [a ,b]. Такая фигура называется криволинейной трапецией.

1) Разобьем отрезок [a, b] произвольным образом на n частей точками . Получим n маленьких отрезков с длинами ; .

2) Через точки деления проведем вертикальные прямые. Трапеция разобьется на n трапеций. На каждом из элементарных отрезков выберем произвольным образом по точке .

Найдем значения функции в этих точках

.

Примем эти ординаты за высоты прямоугольников.

3) Посчитаем, что площади маленьких криволинейных трапеций приближенно равны площадям прямоугольников с основаниями и высотами . Тогда

.

Чем мельче отрезки деления, тем точнее это равенство. За точное значение площади трапеции примем предел, к которому стремятся площади ступенчатых фигур при неограниченном увеличении числа отрезков деления и стремлении к нулю наибольшей из длин этих отрезков.

.

Понятие определенного интеграла

К нахождению предела, рассмотренного в предыдущем пункте, приводит

ряд задач естествознания. Поэтому рассмотрим предел, отвлекаясь от конкретного смысла задачи.

Пусть на [a, b] задана произвольная функция y=f(x). Применяя для нее схему предыдущей задачи, составим сумму произведений вида

.

Такая сумма называется интегральной суммой функции f(x) на [a, b]. Она

зависит от способа деления [a, b] на элементарные части и от выбора точек

на каждой из этих частей.

Определение. Если существует конечный предел последовательности интегральных сумм при , не зависящий от способа деления [a, b] и выбора точек , то этот предел (число) называется определенным интегралом от функции f(x) на [a, b] и обозначается

_____________________________

Возвращаясь к задаче о площади криволинейной трапеции, получаем

т.е. при определенный интеграл численно равен площади криволинейной трапеции. В этом состоит геометрический смысл определенного интеграла.

Теорема. Для любой непрерывной на [a,b] функции существует определенный интеграл.

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.