Характеристики выборочной совокупности и их распространение на генеральную совокупность. При использовании выборочного метода в социально-экономических исследованиях обычно применяют два основных вида обобщающих показателей: относительную величину альтернативного признака и среднюю величину количественного признака.
Относительная величина альтернативного признака характеризует долю (удельный вес) единиц в статистической совокупности, которые отличаются от всех других единиц этой совокупности только наличием (отсутствием) изучаемого признака. Например, доля нестандартных изделий во всей партии товара, удельный вес продавцов в общей численности работников магазина и т.п.
Средняя величина количественного признака – это обобщающая характеристика варьирующего признака, который имеет различные значения у отдельных единиц статистической совокупности. Например, средний вес изделия, средняя выработка одного продавца и т.д.
В генеральной совокупности доля единиц, обладающих изучаемым признаком, называется генеральной долей (обозначается Р), а средняя величина варьирующего признака – генеральной средней (обозначается ).
В выборочной совокупности долю изучаемого признака называют выборочной долей w , а среднюю величину в выборке – выборочной средней .
Выборочная доля определяется из отношения единиц, обладающих изучаемым признаком, m к общей численности единиц выборочной совокупности n:
Основная задача выборочного исследования – на основе характеристик выборочной совокупности w и получить достоверные суждения о показателях доли P и средней в генеральной совокупности.
Возможные расхождения между характеристиками выборочной и генеральной совокупностей измеряются средней ошибкой выборки μ. В математической статистике доказывается, что значения μ определяются по формуле
,
где - генеральная дисперсия. Но при проведении выборочных обследований она, как правило, неизвестна. На практике для определения μ обычно используется дисперсия выборочной совокупности σ2 .
При этом для показателя доли альтернативного признака дисперсия определяется по формуле дисперсии альтернативного признака, т.е.
σw 2 = w(1-w)
Следует иметь в виду, что приведенная выше формула расчета средней ошибки выборки μ применяется лишь при повторном отборе, когда каждая попавшая в выборку единица после фиксации значения изучаемого признака должна быть возвращена в генеральную совокупность, где ей опять представляется возможность попасть в выборку. Но на практике выборочные обследования проводятся обычно по схеме бесповторного отбора, при котором повторное попадание в выборку одних и тех же единиц исключено.
Поскольку при бесповторном отборе численность генеральной совокупности N в ходе выборки сокращается, то в формулу расчета μ включают дополнительный множитель . Формула средней ошибки выборки принимает следующий вид:
- общий вид:
- для выборочной доли
- для выборочной средней
Значения средней ошибки выборки для выборочной доли и выборочной средней необходимы для установления возможных значений генеральной доли P и генеральной средней . Пределы значений этих показателей определяются по формулам:
P= w
=
В математической статистике доказывается, что пределы значений характеристик генеральной совокупности P и отличаются от характеристик выборочной совокупности w и на величину с вероятностью 0,683. Т.е. в 683 случаях из тысячи генеральные характеристики будут находиться в установленных пределах, в остальных 317 случаях они могут выйти за эти пределы.
Вероятность суждения можно повысить, если расширить пределы отклонений, увеличив среднюю ошибку выборки в t раз. Таким образом, показатели генеральной совокупности по показателям выборки определяются по формулам:
P= w
=
Величина называется предельной ошибкой выборки Δ. Т.е.
Δw =
Δx =
Множитель t называется коэффициентом доверия и определяется в зависимости от того, с какой вероятностью надо гарантировать результаты выборочного обследования. Конкретные значения коэффициента доверия t для различных степеней вероятности определяются с помощью функции А.М.Ляпунова. На практике пользуются готовыми таблицами этой функции:
|