Пиши Дома Нужные Работы

Обратная связь

Вариация альтернативного признака.

Альтернативный признак – качественный признак, имеющий две взаимоисключающие разновидности (например, работники предприятия подразделяются на мужчин и женщин; продукция – на годную и бракованную и т.д.).

Альтернативный признак принимает всего два значения:

1 – наличие признака; 0 – отсутствие признака.

p + q = 1,

где р – доли единиц, обладающих признаком;

q – доли единиц, не обладающих признаком.

 

Среднее значение альтернативного признака

Дисперсия альтернативного признака

Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающим данным признаком.

Предельное значение вариации альтернативного признака равно 0,25; оно получается при p = q = 0,5.

Пример. Если, например, 2% всех деталей бракованные (р = 0,02), то 98% − годные (q = 0,98), тогда дисперсия доли брака .

Среднее квадратическое отклонение доли брака составит:

, т.е. 14%.

 

Правило сложения дисперсий

Правило сложения дисперсий гласит, что общая дисперсия ( ) может быть разложена на две составные части: 1) межгрупповую ( ) и 2) среднюю из внутригрупповых ( )

.

Общая дисперсия измеряет вариацию результативного признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдельных значений результативного признака от его средней величины и может быть вычислена как простая дисперсия или взвешенная.

.

 

Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, обусловленную влиянием признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений групповых (частных) средних от общей средней :



,

где - среднее значение признака i-й группы; f – численность единиц в группе.

 

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений отдельных значений результативного признака внутри группы у от средней арифметической этой группы (групповой средней) и может быть исчислена как простая дисперсия или как взвешенная дисперсия по формулам, соответственно:

 

На основании внутригрупповой дисперсии по каждой группе можно определить общую среднюю из внутригрупповых дисперсий:

.

 

Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью – неизвестную, а также судить о силе влияния группировочного признака.

В статистическом анализе широко используется эмпирический коэффициент детерминации ( ) – показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии результативного признака и характеризующий силу влияния группировочного признака на образование общей вариации:

.

Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х. При отсутствии связи коэффициент детерминации равен нулю, а при функциональной связи – единице.

Эмпирическое корреляционное отношение – это корень квадратный из эмпирического коэффициента детерминации:

,

оно показывает тесноту связи между группировочным и результативным признаками.

Эмпирическое корреляционное отношение, как и коэффициент детерминации, может принимать значения от 0 до 1.

Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.

Для качественной оценки тесноты связи на основе показателей эмпирического корреляционного отношения можно воспользоваться шкалой Чэддока:

η 0,1 – 0,3 0,3 – 0,5 0,5 – 0,7 0,7 – 0,9 0,9 – 0,99
Сила связи Слабая Умеренная Заметная Тесная Весьма тесная

 

Пример. (Гусаров)

Пусть при изучении влияния квалификации (тарифного разряда) рабочих на уровень производительности труда в цехе были получены данные, представленные в табл.

Таблица

Распределение рабочих по среднечасовой выработке изделий

№ п/п Рабочие IV разряда № п/п Рабочие V разряда
Выработка рабочего, шт. (yi) Выработка рабочего, шт. (yi)
-3 -1
-1 -1
-1
       
       
Σ - Σ -

 

Для результативного признака исчислить:

1) групповые дисперсии;

2) среднюю из внутригрупповых дисперсий;

3) межгрупповую дисперсию;

4) общую дисперсию;

5) проверить правильность сложения дисперсий.

В этом примере данные группируются по квалификации (тарифному разряду) рабочих, являющейся факторным признаком х.

Результативный признак y варьирует как под влиянием систематического фактора х – квалификации (межгрупповая вариация), так и других неучтенных случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью дисперсий: общей, межгрупповой и внутригрупповых.

 

1. Для расчета групповых дисперсий исчислим средние выработки по каждой группе и общую среднюю выработку, шт.:

по первой группе ;

по второй группе ;

по двум группам .

 

Данные для расчета дисперсий по группам представлены в табл. Подставив необходимые значения в формулу, получим внутригрупповые дисперсии:

по первой группе ;

по второй группе .

Внутригрупповые дисперсии показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудование, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме различий в квалификационном разряде (внутри группы все рабочие имеют одну квалификацию).

 

2.Рассчитаем среднюю из внутригрупповых дисперсий по формуле:

.

Средняя из внутригрупповых дисперсий отражает вариацию выработки, обусловленную всеми факторами, кроме квалификации рабочих, но в среднем по всей совокупности.

 

3.Исчислим межгрупповую дисперсию по формуле:

.

Межгрупповая дисперсия характеризует вариацию групповых средних, обусловленную различиями групп рабочих по квалификационному разряду.

 

4. Исчислим общую дисперсию по формуле:

.

Общая дисперсия отражает суммарное влияние всех возможных факторов на общую вариацию среднечасовой выработки изделий всеми рабочими цехами.

 

5.Суммирование средней из внутригрупповых дисперсий и межгрупповой дает общую дисперсию:

.

Очевидно, чем больше доля межгрупповой дисперсии в общей дисперсии, тем сильнее влияние группировочного признака (классификационного разряда) на изучаемый признак (количество изготовляемых изделий).

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.