Швидкість зміни імпульсу тіла дорівнює діючій на нього силі.
. (2.2.2)
Векторна величина називається елементарним імпульсом сили. Згідно з другим законом Ньютона зміна імпульсу матеріальної точки або тіла дорівнює імпульсу діючої на точку або тіло сили, тобто
. (2.2.3)
Основний закон динаміки матеріальної точки виражає принцип причинності в класичній механіці. Суть цього принципу визначає однозначний зв’язок між зміною в часі стану руху і положення в просторі матеріальної точки або тіла і діючої сили. Це дозволяє використати початкові умови стану матеріальної точки та розрахувати її стан в довільний наступний момент часу.
Другий закон Ньютона, записаний у вигляді
, (2.2.4)
називається рівнянням руху точки. Така форма запису другого закону Ньютона використовується для розв’язування задач стосовно матеріальної точки або твердого тіла.
У механіці велике значення має принцип незалежної дії сил. Якщо на матеріальну точку діють одночасно кілька сил, то кожна з них надає матеріальній точці прискорення у відповідності з другим законом Ньютона. Згідно з цим принципом сили й прискорення можна проектувати на координатні осі, що суттєво полегшує розв’язування задач.
Дотичне (тангенціальне) й нормальне (доцентрове) прискорення матеріальної точки або твердого тіла, можна визначати за допомогою відповідних складових сил:
; ; , (2.2.5)
а також
; ; , (2.2.6)
де - дотична складова діючої сили; - нормальна складова сили.
Короткі висновки:
- другий закон Ньютона є експериментальним законом. Він виник у результаті оброблення величезної кількості експериментальних фактів;
- у випадку, коли результуюча всіх діючих сил = 0, тобто при відсутності дії на тіло інших тіл, прискорення з яким рухається тіло теж буде дорівнювати нулю. Цей висновок збігається з першим законом Ньютона, тому можна вважати, що перший закон Ньютона є окремим випадком другого закону.
2.3. Третій закон Ньютона. Закон збереження імпульсу
Сили, з якими взаємодіють тіла або матеріальні точки, завжди рівні за модулем й протилежні за напрямком.
Це і є формулювання третього закону Ньютона.
Результатом третього закону Ньютона є ствердження того, що сили взаємодії направлені уздовж прямої, яка з’єднує взаємодіючі тіла або матеріальні точки, тобто
. (2.3.1)
У співвідношенні (2.3.1) сили і прикладені до різних тіл, а тому не можуть зрівноважувати одна одну. Додавати за правилом векторного додавання можна лише сили, прикладені до одного тіла. Сили, прикладені до різних матеріальних точок (тіл), завжди діють парами і є силами однієї природи.
Третій закон Ньютона дозволяє перейти від динаміки окремої матеріальної точки до динаміки системи матеріальних точок, оскільки дозволяє звести будь-яку взаємодію до сил парної взаємодії між цими матеріальними точками.
Доведемо що в довільній замкненій системі сумарний імпульс всіх матеріальних точок або тіл цієїсистеми з часом не змінюється (закон збереження імпульсу).
Розглянемо механічну систему, яка складається із n матеріальних точок або тіл, маси і швидкості яких відповідно дорівнюють m1, m2, m3,… mn і , , ,...
Запишемо другий закон Ньютона для кожного із тіл (матеріальних точок) цієї системи:
,
. . . . . . . . . . . .
, (2.3.1)
де - рівнодійні всіх внутрішніх сил, діючих на відповідні тіла або матеріальні точки системи; - рівнодійні всіх зовнішніх сил.
Додамо почленно ці рівняння, одержимо:
. (2.3.2)
або
. (2.3.3)
У відповідності з третім законом Ньютона всі внутрішні сили мають парний характер, а тому взаємно компенсують одна одну
. (2.3.4)
Для замкненої механічної системи , зовнішні сили на тіла ізольованої системи не діють. Тому
,
звідки
. (2.3.5)
Вираз (2.3.5) є законом збереження імпульсу в механіці.
У відповідності з законом збереження імпульсу відбувається рух ракет, взаємодіють між собою матеріальні точки або тверді тіла тощо.
Короткі висновки:
- при відсутності дії зовнішніх сил сумарний імпульс усіх тіл замкнутої системи з часом не змінюється. (наслідок закону збереження імпульсу);
- сумарний імпульс залишається сталим і для незамкнутої системи при умові, що зовнішні сили в сумі не дорівнюють нулю. Однак і в цьому випадку проекції суми цих сил на відповідні напрямки мають дорівнювати нулю.
В класичній механіці Ньютона через те, що маса тіла не залежить від швидкості руху (v << c), імпульс системи тіл може бути виражений через швидкість її центра мас.
Центром мас (або центром інерції) системи матеріальних точок називається деяка точка в тілі або системі матеріальних точок, положення якої характеризує розподіл маси цієї системи.
Радіус-вектор центра мас системи матеріальних точок або твердих тіл (рис. 2.1.) дорівнює
, (2.3.6)
де і - маса і радіус-вектор і -ї точки в системі; - сумарна маса всіх тіл або матеріальних точок системи.
У цьому випадку імпульс системи матеріальних точок визначається формулою:
. (2.3.7)
Рис.2.1.
Центр мас системи рухається як матеріальна точка, в якій зосереджена маса всієї системи. Рівняння руху центра мас системи можна записати так:
. (2.3.8)
Із закону збереження імпульсу витікає, що центр мас замкнутої системи або рухається рівномірно й прямолінійно, або залишається в стані спокою.
Зупинимося коротко на характеристиці сил, які діють в механіці.
В системі відліку зв’язаною із Землею, на будь-яке тіло масою m діє сила тяжіння.
, (2.3.9)
де – прискорення сили земного тяжіння. Біля поверхні землі g=9,81 м/с2 . Сили тяжіння діють на всі тіла. Не завжди сила тяжіння може бути вагою тіла.
Вага тіла – це сила, з якою тіло діє внаслідок тяжіння на опору або підвіс. Вага тіла може дорівнювати силі тяжіння лише у випадку перебування його в стані спокою на горизонтальній підставці (рис. 2.2)
Вага тіла чисельно дорівнює реакції опори , однак направлена по лінії дії сили тяжіння .
. (2.3.10)
Рис.2.2.
В усіх інших випадках вага тіла не дорівнює силі тяжіння.
Невагомість– це стан тіла, при якому воно рухається тільки під дією сили тяжіння. Будь-яке вільно падаюче тіло перебуває завжди в стані невагомості.
Крім гравітаційних сил широко поширені сили пружності, які проявляються при взаємодії тіл у вигляді деформацій.
В межах пружності тіл пружні сили, як правило, пропорційні величині деформацій
, (2.3.11)
де - величина деформації; k - коефіцієнт пружності, різний для різних тіл.
Природа пружних сил пов’язана з електромагнітними взаємодія-ми.
Сили тертя виникають при ковзанні одних тіл по поверхні інших тіл. У цьому випадку сила тертя пропорційна силі нормального тиску , тобто
тер = k· , (2.3.12)
де k – коефіцієнт тертя (залежить від оброблення поверхонь ковзання); N – сила нормального тиску.
Сила тертя завжди перешкоджає направленому руху тіла. Природа сили тертя теж пов’язана із електромагнітними взаємодіями.
ЛЕКЦІЯ 3
МЕХАНІЧНА ЕНЕРГІЯ
3.1.Механічна робота, як міра зміни енергії. Потужність. Кінетична енергія.
3.2.Консервативні й неконсервативні сили. Потенціальна енергія. Зв’язок роботи й потенціальної енергії.
3.3.Сила й потенціальна енергія. Поняття градієнта.
3.4.Закон збереження й перетворення механічної енергії.
3.1. Механічна робота, як міра зміни енергії. Потужність. Кінетична енергія
Енергія – це універсальна міра руху різних форм матерії.
З різними формами руху матерії пов’язані різні форми енергії: механічна, теплова, електромагнітна, ядерна та ін.
Будь-які зміни механічного руху визиваються силами, що діють із сторони інших тіл.
Фізична величина, яка чисельно дорівнює скалярному добутку векторів сили і переміщення , називається механічною роботою.
^ ), (3.1.1)
де і - модулі векторів сили і переміщення; ^ ) – кут між напрямками векторів сили і переміщення.
У загальному випадку дія сили може змінюватись як за величиною, так і за напрямком, тому в таких випадках формулою (3.1.1) користуватися не можна.
На безмежно малому переміщенні силу можна вважати постійною. В цьому випадку величина елементарної роботи A буде дорівнювати
. (3.1.2)
Робота змінної сили визначається за допомогою інтеграла:
. (3.1.3)
Одиницею вимірювання роботи в системі СІ є джоуль (Дж)
= Н·м = Дж.
Розглянемо найбільш загальний випадок руху матеріальної точки уздовж криволінійної траєкторії L. Умовно поділимо пройдений шлях на безмежно малі ділянки шириною dx, на яких силу F може вважати сталою величиною (рис. 3.1).
Елементарна робота на таких безмежно малих переміщеннях може бути розрахована за формулою
. (3.1.4)
Рис.3.1
Якщо скласти всі елементарні роботи, то одержимо вираз для знаходження повної роботи у вигляді криволінійного інтеграла уздовж криволінійної траєкторії
. (3.1.5)
Робота сили, виконана за одиницю часу, називається потужністю. Потужність – це швидкість виконання механічної роботи. Тому
. (3.1.6)
Одиницею вимірювання потужності є ват (Вт). Один Вт дорівнює 1Дж/с.
Оскільки
, (3.1.7)
то формулу для роботи можна переписати у вигляді
, (3.1.8)
тобто роботу можна виразити через інтеграл від потужності й часу, а також через скалярний добуток вектора сили й вектора швидкості. В останньому випадку сила, перпендикулярна до вектора швидкості, роботи не виконує.
З урахуванням другого закону Ньютона вираз для механічної роботи набуде вигляду:
. (3.1.9)
Оскільки , а , то
. (3.1.10)
Якщо швидкість матеріальної точки в процесі руху змінюється від u1 до u2 , то робота, яка виконується у цьому випадку, буде дорівнювати
. (3.1.11)
Скалярна величина називається кінетичною енергією. Таким чином ми довели, що робота сили по переміщенню матеріальної точки дорівнює зміні її кінетичної енергії.
Слід також пам’ятати, що в цьому прикладі ми мали справу з повною силою, діючою на точку. Так, у випадку переміщення саней уздовж не дуже гладенької дороги, посипаної піском, виконується робота, відмінна від нуля. Приросту кінетичної енергії тут не буде. Вся справа в тому, що сила опору руху саней має протилежний напрям. Робота цієї сили має від’ємний знак. Сила тертя теж виконує роботу, але від’ємну. А в результаті повна сила і повна робота виявляються рівними нулю.
3.2. Консервативні й неконсервативні сили. Потенціальна енергія. Зв’язок роботи й потенціальної енергії
Всі сили, які зустрічаються в механіці макроскопічних тіл, прийнято поділяти на консервативні й неконсервативні.
До консервативних сил відносяться такі сили, робота яких не залежить від форми шляху між двома точками 1 і 2 (рис. 3.2).
A1,2(a)=A1,2(b)=A1,2(c)
Рис.. 3.2
Прикладом консервативних сил є сила тяжіння Землі. Робота сили тяжіння при перенесенні матеріальної точки із положення 1 в положення 2, уздовж прямолінійного відрізку (рис.3.3) дорівнює:
Рис. 3.3
, (3.2.1)
де h1 і h2 - висоти, на яких перебувала матеріальна точка на початку і в кінці шляху. Вираз роботи (3.2.1) справедливий для переміщення з точки 1 в точку 2 на будь-якому шляху.
Ще одним прикладом консервативних сил є так звані центральнісили. Прикладом центральних сил можуть бути гравітаційні сили планет і зірок, кулонівські сили точкових зарядів обох знаків, ядерні сили ( на дуже малих відстанях) тощо.
Покажемо, що робота центральних сил не залежить від форми шляху. Знайдемо роботу сили гравітаційного притягання двох точкових мас m і М у випадку переміщення точкової маси m з точки 1 в точку 2 в гравітаційному полі точкової маси М (рис. 3.4.).
Рис. 3.4
. (3.2.2)
В даних перетвореннях . Тому
. (3.2.3)
Введемо поняття потенціальної енергії, як частини механічної енергії, яка залежить від взаємного розміщення матеріальних точок (тіл) у силовому полі.
Силове поле називається потенціальним, якщо робота переміщення точки в цьому полі не залежить від форми шляху. В потенціальних полях діють лише консервативні сили.
Потенціальна енергія чисельно дорівнює роботі переміщення матеріальної точки (тіла) з даної точки простору в деяке фіксоване або нульове положення. Точка ”О” на рис. 3.5. є фіксованою.
Знайдемо роботу переміщення матеріальної точки з положення М1 в положення М2. Для цього спочатку знайдемо роботу переміщення точки (тіла) з точки “М1” в точку “О” і з точки “М2” в точку “О”.
Рис. 3.5.
, . (3.2.4)
. (3.2.5)
В цих розрахунках П1 і П2, згідно з визначенням, є потенціальними енергіями матеріальної точки (тіла) в точках М1 і М2 простору. Тому робота консервативних сил в потенціальних полях може бути виражена через втрату (зменшення) потенціальної енергії
П, де dП= - (П2 – П1). (3.2.6)
При заміні одного нульового положення іншим, потенціальна енергія змінюється на постійну величину. Таким чином, потенціальна енергія визначається неоднозначно, а з точністю до деякої константи. Однак це не впливає на кінцеві результати, так як в цьому випадку є важливою лише різниця потенціальних енергій dП.
Прикладами потенціальної енергії у деяких найпростіших випадках є:
П=mgh – потенціальна енергія однорідного поля тяжіння;
П= - потенціальна енергія розтягнутої на величину х пружини ( початкова точка х=0);
П= - потенціальна енергія гравітаційного притягання точкових мас m і М.
3.3.Сила й потенціальна енергія. Поняття градієнта
Зв’язок сили й потенціальної енергії знайдемо із співвідношення (3.2.6)
, звідки . (3.2.7)
Потенціальна енергія є скалярною величиною. Однак її зміна в певному напрямі є векторною величиною. Зміна потенціальної енергії в певному напрямі називається градієнтом, тобто
. (3.2.8)
В рівності (3.2.8) вектором є градієнт.
Для руху матеріальної точки (тіла) в тривимірному просторі градієнт потенціальної енергії повинен враховувати проекції на осі координат х, у, z, тобто
, (3.2.9)
де - одиничні вектори в напрямках координатних осей х,у, z; - частинні похідні потенціальної енергії в напрямку відповідних осей координат.
Вираз (3.2.9) також можна записати через оператор набла, тобто
, (3.2.10)
де - - оператор набла.
В формулі (3.2.10) потенціальна енергія є скалярною величиною, а ось диференціювання скалярної величини по координатним осям дає вектор.
Вирази оператора набла і grad мають однаковий фізичний зміст, і відображують одну і ту ж зміну скалярної величини П в напрямку координатних осей х, у, z; тобто
. (3.2.11)
Градієнт скалярної величини П є вектор, який направлений вздовж нормалі в сторону зростання функції Пz (рис.3.6).
Рис. 3.6.
Поверхні однакової потенціальної енергії називаються еквіпотенціальними поверхнями.
3.4. Закон збереження й перетворення механічної енергії
Сума кінетичної і потенціальної енергії всіх тіл, які складають замкнуту систему і взаємодіють між собою лише консервативними силами, залишається незмінною.
Це твердження виражає собою закон збереження й перетворення енергії в механічних процесах.
Якщо між тілами, які входять до замкнутої системи, будуть діяти сили тертя, то механічна енергія не зберігається. Частина її перетворюється у внутрішню енергію нагрівання тіл.
Розглянемо замкнуту систему матеріальних точок масами m1, m2, m3, ..., mn, які рухаються з швидкостями відповідно v1, v2, v3, …,vn під дією внутрішніх консервативних сил f1, f2 , f3,…, fn . Запишемо для всіх тіл цієї системи ІІ-й закон Ньютона:
(3.4.1)
Нехай за час dt кожна із точок системи здійснює відповідне переміщення
Помножимо рівності (3.4.1) на відповідні їм переміщення, одержимо:
(3.4.2)
Склавши всі ці рівняння в одно, одержимо
або
. (3.4.3)
В рівності (3.4.3) під знаками сум є безмежно малі зміни відповідно кінетичної і потенціальної енергій, тобто
. (3.4.4)
В рівності (3.4.4) враховано, що робота консервативних сил виконується за рахунок зменшення потенціальної енергії (рівність 3.2.6), або
, (3.4.5)
де - повна кінетична енергія всіх тіл замкненої системи;
- повна потенціальна енергія всіх матеріальних точок (тіл) замкненої системи.
З урахуванням цих зауважень одержуємо:
d(К+П)=0, звідки К+П=const . (3.4.6)
Повна механічна енергія всіх тіл замкненої системи з часом не змінюється. В межах замкнутої системи відбувається перетворення енергії з одного виду в інший.
Системи тіл, в яких спостерігається перетворення енергії в інші, не механічні види енергії, називаютьсядисипативною. Однак і в цьому випадку відповідна еквівалентність між енергіями обов’язково зберігається.
Короткий висновок:
Таким чином, енергія ніколи не зникає безслідно і не виникає, вона лише перетворюється із одного виду в інший у рівновеликих кількостях.У цьому твердженні полягає основна фізична суть закону збереження і перетворення механічної енергії – суть не зникнення матерії та її руху.
ЛЕКЦІЯ 4
|