Пиши Дома Нужные Работы

Обратная связь

Формирование групп крови у плода и детей

Уже на 2-3 месяце беременности у плода формируются агглютиногены А и В. В то же время эти агглютиногены обладают чрезвычайно низкой способностью к агглютинации. Даже у новорожденного ребенка она приблизительно в 5-10 раз ниже, чем у взрослых людей. Постепенно титр агглютиногенов и их способность образовывать иммунные комплексы с соответствующими агглютининами возрастает, однако только к 10-20 годам можно говорить о том, что агглютиногены окончательно «созрели».

Агглютинины a и b в онтогенезе возникают гораздо позже, чем агглютиногены. К моменту рождения ребенка титр агглютининов очень низок, а у 40% и даже 50% детей они вообще могут отсутствовать. Уже при разведении плазмы в 2-4 раза реакция агглютинации у новорожденного не проявляется, тогда как у взрослого человека она может быть обнаружена при разведении плазмы или сыворотки даже в 500 раз.

Агглютиногены M и N выявляются в эритроцитах плода к концу 3-го месяца внутриутробного развития и формируются окончательно к 5-му месяцу после рождения. Агглютиногены системы Rh появляются очень рано – к концу 2-го месяца беременности и обладают выраженной антигенностью, что зачастую и обеспечивает резус-конфликт между матерью и плодом.

Наличие конфликта между матерью и плодом из-за несовместимости групповых признаков по системам Келл, Вел и другим свидетельствует о том, что эти агглютиногены также формируются у плода.

В заключение мы хотим еще раз предостеречь от излишнего увлечения переливаниями крови. Будьте предельно осторожны!

 

Искусственная кровь

С момента открытия групп крови прошло более 100 лет. За это время переливание крови и её компонетов спасло жизни сотням тысяч и может быть даже миллионам людей. К сожалению, такая статистика не ведется, да и вряд ли она возможна. И в то же время переливание крови принесло человечству неисчислимые беды. Мы не ведём речь о посттрансфузионных осложнениях, унесших жизнь многих людей, в том числе и организатора первого в нашей стране Института переливания крови, профессора А.А. Богданова. Мы не касаемся сенсибилизации больных чужеродными для реципиента Аг, что приводит к возникновению аллергических заболеваний и значительно ухудшает качество жизни человека. Речь идет о заражении людей СПИДом, гепатитами А, В и С и другими заболеваниями при переливании крови, её компонентов и препаратов. Особенно часто такой опасности подвергаются люди, которым необходимы регулярные переливания компонентов и препаратов из крови, – больные гемофилией А и В, лейкозами, гипопластической анемией и др.



В связи с этим чрезвычайно актуальной становится проблема создания искусственной крови, лишенной указанных недостатков и способной в полном объёме заменить человеческую кровь.

Нельзя сказать, что эта проблема возникла сегодня. Более 200 лет тому назад Российская академия наук объявила конкурс на тему о возможности создания искусственной крови. С тех пор появилось немало кровезаменителей, а вот что касается искусственной крови…

Первые серьёзные эксперименты по созданию искусственной крови начались в 60-х годах прошлого века, когда было установлено, что фторуглеродные соединения способны связывать кислород и углекислый газ. В 1966 году американские ученые L. Klark и F. Gollan показали, что подопытная мышь смогла выжить в течение нескольких часов, будучи полностью погруженной в жидкие фторуглероды. А в 1967 году R. Geyer из Гарвардского университета получил перфторуглерод и почти полностью заменил им кровь крысы. И такая крыса продолжала жить, практически не имея собственных эритроцитов.

Впервые всерьез об искусственной крови в нашей стране заговорили в восьмидесятых годах прошлого века, когда в Пущино в Институте биофизики Академии Наук профессорами Ф.Ф. Белоярцевым и Г.Р. Иваницким было получено соединение «Перфторан», способное переносить кислород и углекислый газ и за свой цвет названное «голубой кровью». Казалось бы, можно торжествовать победу. Да не тут-то было. Очень скоро на создателей препарата обрушился поток клеветы. История открытия «голубой крови» закончилась чрезвычайно печально. Не выдержав несправедливых обвинений, профессор Ф.Ф. Белоярцев свёл счеты с жизнью, а профессор Г.Р. Иваницкий был вынужден отказаться от исследований в этом направлении.

Почему же для создания искусственной крови применяются перфторуглеродные соединения? Дело в том, что они способны переносить в 20-30 раз больше кислорода, чем плазма, и в 3 раза больше, чем такое же количество крови. В настоящее время в ряде развитых стран запатентованы препараты на основе перфторуглерода, которые могут быть использованы в качестве кровезаменителей, способных переносить кислород и углекислый газ. При этом О2 отдается тканям, а СО2 выделяется в лёгкие

У искусственной крови есть и еще одно преимущество – переливать её можно, не определяя группу крови реципиента.

В то же время такая искусственная кровь не обладает другими функциями и не способна заменить лейкоциты, тромбоциты, белки и другие составные части крови и лишь переносит О2 и СО2. Переливание же эритроцитов, единственных переносчиков кислорода, – наиболее редкая процедура, применяемая в клинике. Между тем, мировая литература насчитывает несколько сот случаев успешного переливания искусственной крови человеку.

В настоящее время в нашей стране и за её пределами проводятся и другие экспериментальные работы по созданию искусственной крови. Из эритроцитов человека или животных получают раствор гемоглобина и заключают его в искусственные эритроциты. Последние представляют смесь лецитина и холестерина. Эти соединения образуют вокруг гемоглобина искусственные мембраны, получившие наименование липосомы. Такие «эритроциты» не разрушаются в течение нескольких недель при хранении. По своему размеру они в 50 раз меньше естественных эритроцитов, а потому способны легко проникать в мельчайшие капилляры. Предполагается, что с помощью искусственных эритроцитов удастся дополнительно снабжать кислородом ткани сердца и мозга, пострадавшие в результате инфаркта или инсульта.

За последние годы ряд компаний за рубежом объявило о создании новых переносчиков кислорода из просроченной крови доноров и даже крови… коров, путём выделения кислородпереносящих гемов из гемоглобина эритроцитарной массы. Один из таких кровезаменителей, получивший наименование «полигем», прошел клинические испытания по применению в хирургической практике и введению пострадавшим от различных травм на месте происшествия. По уверениям авторов изобретения, препарат не вызывает иммунологических реакций и может быть широко внедрён в клиническую практику.

Пройдут года, в лабораториях ученых появятся отдельные составные части крови, в том числе заменяющие форменные элементы, но вряд ли когда-нибудь будет получена полноценная искусственная кровь.

Тромбоциты

Тромбоциты, иначе – кровяные пластинки, образуются из гигантских клеток красного костного мозга мегакариоцитов. В кровотоке они имеют характерную дисковидную форму, диаметр их колеблется от 2 до 4 мкм, а объем соответствует 6-9 мкм3. С помощью электронной микроскопии установлено, что поверхность интактных тромбоцитов (дискоцитов) гладкая с небольшими многочисленными углублениями, которые служат местом соединения мембраны и каналов открытой канальцевой системы. Дисковидная форма дискоцита поддерживается циркулярным микротубулярным кольцом, располагающимся у внутренней стороны мембраны. Тромбоциты, как и все клетки, имеют двуслойную мембрану, которая по своему строению и составу отличается от мембраны тканей большим содержанием асимметрично расположенных фосфолипидов (рис. 19).

При соприкосновении с поверхностью, отличающейся по своим свойствам от эндотелия, тромбоцит активируется, распластывается, принимает сферическую форму (сфероцит) и у него появляется до десяти отростков, которые могут значительно превышать диаметр тромбоцита. Наличие таких отростков чрезвычайно важно для остановки кровотечения. Одновременно происходит ультраструктурная перестройка внутренней части тромбоцита, заключающаяся в формировании новых структур актина и исчезновении микротубулярного кольца.

В структурной организации тромбоцита различают 4 основных функциональных зоны.

Периферическая зона включает двуслойную фосфолипидную мембрану и области, прилегающие к ней с двух сторон. Интегральные мембранные белки пронизывают мембрану и осуществляют связь с цитоскелетом тромбоцита. Они выполняют не только структурные функции, но и являются рецепторами, насосами, каналами, ферментами и принимают непосредственное участие в активации тромбоцита. Часть молекул интегральных белков, богатых полисахаридными боковыми цепями, выступает наружу, создавая внешнее покрытие липидного бислоя – гликокалекс. На мембране адсорбируется значительное количество белков, принимающих участие в гемостазе, а также иммуноглобулины.

Значение периферической зоны тромбоцита сводится к осуществлению барьерной функции. Кроме того, она принимает участие в поддержании нормальной формы тромбоцита, через неё осуществляется обмен между интра- и экстрацеллюлярной областями, активация и участие кровяных пластинок в гемостазе.

Золь-гель зона представляет собой вязкий матрикс тромбоцитарной цитоплазмы и непосредственно прилегает к субмембранной области периферии. Состоит она, в основном, из различных белков (до 50% тромбоцитарных белков сконцентрировано в этой зоне). В зависимости от того, остается ли тромбоцит интактным, или на него действуют активирующие стимулы, состояние белков и их форма изменяется. В матриксе золь-гель сконцентрировано большое количество зёрен или глыбок гликогена, являющегося энергетическим субстратом тромбоцита.

Зона органелл состоит из образований, беспорядочно расположенных по всей цитоплазме интактных тромбоцитов. Они включают митохондрии, пероксисомы и 3 типа гранул хранения: a-гранулы, d-гранулы (электроноплотные тельца) и g-гранулы (лизосомы).

a-гранулы преобладают среди других включений. Они содержат более 30 белков, принимающих участие в гемостазе и других защитных реакциях. В плотных тельцах хранятся субстанции, необходимые для осуществления тромбоцитарного гемостаза – адениновые нуклеотиды, серотонин, Са2+. В лизосомах содержатся гидролитические энзимы.

Зона мембран включает каналы плотной тубулярной системы (ПТС), образуемые при взаимодействии мембран ПТС и открытой канальцевой системы (ОКС). ПТС напоминает саркоплазматический ретикулум миоцитов и содержит Са2+. Следовательно, зона мембран осуществляет хранение и секрецию внутриклеточного Са2+ и играет чрезвычайно важную роль в осуществлении гемостаза.

На мембране тромбоцитов находятся интегрины, выполняющие функции рецепторов, хотя они характеризуются ограниченной специфичностью, т.е. молекулы агонистов могут вступать во взаимодействие не с одним, а с несколькими рецепторами. Особенностью интегринов является и то, что они принимают участие во взаимодействии тромбоцита с тромбоцитом, а также тромбоцита с субэндотелием, обнажающимся при повреждении сосуда. Интегрины по своему строению относятся к гликопротеинам и представляют собой гетеродимерные молекулы, состоящие из семейства a и b-субъединиц, различные комбинации которых являются участками для связывания различных лиганд. В зависимости от исходной доступности мест связывания на наружной мембране, рецепторы могут быть разделены на 2 группы: 1. Первичные, или основные рецепторы, доступные для агонистов в интактных тромбоцитах. К ним относятся многие рецепторы для экзогенных агонистов, а также для коллагена (GPIb-IIa), фибронектина (GPIc-IIa), ламинина (a6b1) и витронектина (avb3). Последний также способен узнавать и другие агонисты – фибриноген, фактор фон Виллебранда (vWF). Известно несколько рецепторов, являющихся по структуре не интегринами, и среди них богатый лейцином гликопротеиновый комплекс Ib-V-IX, содержащий рецепторные места связи для vWF. 2. Индуцированные рецепторы, которые становятся доступными (экспрессируются) после возбуждения первичных рецепторов и структурной перестройки мембраны тромбоцита. К этой группе, прежде всего, относится рецептор семейства интегринов – GP-IIb-IIIa, с которым могут соединяться фибриноген, фибронектин, витронектин, vWF и др.

В норме число тромбоцитов у здорового человека соответствует 1,5-3,5´1011/л, или 150-350 тысяч в 1 мкл. Увеличение числа тромбоцитов носит наименование тромбоцитоз, уменьшение – тромбоцитопения. В естественных условиях число тромбоцитов подвержено значительным колебаниям (количество их возрастает при болевом раздражении, физической нагрузке, стрессе), но редко выходит за пределы нормы. Как правило, тромбоцитопения является признаком патологии и наблюдается при лучевой болезни, врожденных и приобретенных заболеваниях системы крови. Однако у женщин в период менструаций число тромбоцитов может уменьшаться, хотя редко выходит за пределы нормы (их содержание превышает 100000 в 1 мкл) и никогда не достигает критических значений.

Следует отметить, что даже при резкой тромбоцитопении, доходящей до 50 тысяч в 1 мкл, кровоточивости не бывает и врачебных вмешательств в подобных ситуациях не требуется. Только при достижении критических цифр – 25-30 тысяч тромбоцитов в 1 мкл – возникает легкая кровоточивость, требующая лечебных мероприятий. Приведенные данные свидетельствуют о том, что тромбоциты в кровотоке находятся в избытке, обеспечивая надёжный гемостаз в случае возникновения травмы сосуда.

Функции тромбоцитов

Основное назначение тромбоцитов – участие в процессе гемостаза. Кровяные пластинки принимают участие в образовании тромбоцитарной пробки и процессе свертывания крови. Важная роль в этих реакциях принадлежит так называемым тромбоцитарным факторам, которые сосредоточены, главным образом, в гранулах и мембране кровяных пластинок. Наиболее важным из них является частичный (неполный) тромбопластин, представляющий осколок клеточной мембраны. Роль этого фактора может также выполнять активированный тромбоцит, на поверхности которого развертываются реакции свертывания крови. В тромбоцитах содержатся антигепариновый фактор, фибриноген, АДФ, контрактильный белок тромбостенин (напоминающий актомиозин), фибринстабилизирующий фактор или фибриназа, активаторы и ингибиторы растворения фибринового сгустка (фибринолиза), митогенный фактор, вазоконстрикторные факторы – серотонин, адреналин, норадреналин и др. Значительная роль в гемостазе отводится тромбоксану А2 (ТхА2), который синтезируется из арахидоновой кислоты, входящей с состав клеточных мембран (в том числе и тромбоцитов) под влиянием фермента тромбоксансинтетазы.

Одной из основных функций тромбоцитов является ангиотрофическая. По образному выражению З.С. Баркагана, тромбоциты являются кормильцами сосудистой стенки. При резкой тромбоцитопении трофика сосудистой стенки нарушается, что приводит к повышению её проницаемости и снижению резистентности.

Тромбоциты принимают участие в защите организма от чужеродных агентов. Они обладают фагоцитарной активностью, содержат иммуноглобулины, в том числе IgG, являются источником лизоцима и b-лизинов, способных разрушать мембрану некоторых бактерий. Кроме того, в их составе обнаружены пептидные факторы, вызывающие превращение нулевых лимфоцитов в Т- и В-лимфоциты. Эти соединения в процессе активации тромбоцитов выделяются в кровь и защищают при травме сосудов организм от попадания болезнетворных агентов.

Кровяные пластинки необходимы также для проявления репаративных процессов. Более того, покрывая фибриновый сгусток, тромбоциты образуют атромбогенный монослой, напоминающий по своим свойствам эндотелий. Наконец, тромбоциты являются источником многих биологически активных веществ, в том числе и цитокинов, которые принимают участие в регуляции различных физиологических функций.

 

Регуляция тромбоцитопоэза

Известно, что тромбоциты образуются в результате фрагментации цитоплазмы мегакариоцитов. После нескольких митозов пролиферирующие мегакариоцитарные предшественники (КОЭ-Мгкц) перестают делиться и вступают в стадию эндомитоза – процесса редупликации ДНК без образования дочерних клеток. В результате формируются популяции промегакариобластов. В процессе дальнейшей дифференциации с прогрессивным увеличением общего объема происходит созревание ядра и цитоплазмы. В последующем образуются мегакариобласты, промегакариоциты, зрелые гранулярные мегакариоциты и, наконец, мегакариоциты зрелые, способные продуцировать кровяные пластинки (рис. 4).

В настоящее время установлено, что мегакариоцитопоэз регулируется двумя специфичными гуморальными факторами на 2-х разных уровнях – на уровне клеток-предшественников и в фазе эндомитотического развития мегакариоцитов с их конечной дифференцировкой. Первое из указанных соединений носит наименование мегакариоцитостимулирующий фактор, второй тромбоцитопоэзстимулирующий фактор или тромбоцитопоэтин.

Тромбоцитопоэтин, по всей видимости, образуется печенью, почками и костным мозгом. По своей структуре это соединение является гликопротеидом с молекулярной массой около 36 кДа. На кафедре нормальной физиологии Читинской медицинской академии тромбоцитопоэтический фактор выделен непосредственно из тромбоцитов. Им оказался комплекс полипептидов с молекулярной массой менее 10 кДа.

Установлено, что тромбоцитопоэтины высвобождаются в циркулирующую кровь при снижении в ней числа кровяных пластинок. Тромбоцитопоэтин усиливает эндомитоз в незрелых мегакариоцитах, но прежде всего он ускоряет созревание цитоплазматических структур мегакариоцитов и синтез белков a-гранул.

Различают прямые и косвенные регуляторы тромбоцитопоэза. К прямым регуляторам, стимулирующим образование кровяных пластинок, относятся ЛИФ, IL-3, IL-6, IL-7, IL-9, IL-11 и IL-13, эритропоэтин, а также GM-CSF, к косвенным – IL-1 a и b, IL-4, выполняющие функции модуляторов этого процесса. Особенно велика роль в стимуляции тромбоцитопоэза IL-11, который резко увеличивает содержание тромбоцитов в крови, что обусловлено стимуляцией их предшественников.

В отличие от интерлейкинов, интерфероны способны тормозить продукцию тромбоцитов.

На мегакариоцитопоэз оказывают влияние медиаторы и гормоны. Так, адреналин ускоряет образование мегакариоцитов. Гормоны коры надпочечника стимулирует пролиферацию клеток предшественников мегакариоцитов и образование тромбоцитов.

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.