Пиши Дома Нужные Работы

Обратная связь

Параметры, определяющие состояние вещества. Идеальный газ. Вывод основного уравнения кинетической теории газов. Вывод основных газовых законов. Уравнение состояния идеальных газов.

Идеальным газом называется газ, молекулы которого не взаимодействуют друг с другом на расстоянии и имеют исчезающе малые собственные размеры. Состояние заданной массы m идеального газа определяется значениями трёх параметров: давления P, объёма V, и температуры Т.

Уравнение состояния идеального газа или уравнение Менделеева - Клапейрона является обобщением законов идеального газа, открытых экспериментально до создания МКТ. Однако, из основного уравнения МКТ (2.3), можно получить уравнение состояния идеального газа. Для этого подставим вместо средней кинетической энергии поступательного движения молекулы в основное уравнение МКТ идеальных газов правую часть равенства (2.4), получим уравнение, в которое не входят микропараметры газа (2.5). Так как , следовательно, или . Учитывая, что , получим N=NA , а так как NA×k = R = 8,3 - молярная газовая постоянная[2,3,5,15] или универсальная газовая постоянная [1,6,7,] , то получим уравнение Менделеева (2.6). Уравнение состояния газа часто удобно использовать в записи, предложенной Клапейроном, если количество вещества не изменяется или (2.7). Уравнение (2.7) часто называют обобщённым газовым законом. Тот факт, что из основного уравнения молекулярно-кинетической теории идеального газа можно вывести уравнение состояния идеального газа, подтверждает верность молекулярно-кинетической теории вещества.

Основное уравнение молекулярно – кинетической теории газов. Возьмем сосуд с газом и определим давление P газа на стенки сосуда. Для простоты рассмотрения выберем этот сосуд в форме куба с ребром l и расположим его в декартовой системе координат, как показано на рисунке. Пусть в сосуде имеется всего N молекул. Предположим, что:



1)Вдоль оси х движется одна треть всех молекул, т.е. ;

2)Удар молекул о стенку Q идеально упругий и молекулы проходят расстояние, равное размеру куба, не испытывая соударений.

Импульс силы, полученный стенкой при ударе молекулы, определим из второго закона Ньютона. . где - изменение импульса молекулы, m – масса молекулы. Поскольку масса стенки намного больше массы молекулы, то и или по модулю , где использовано обозначение . Таким образом, одна молекула одна молекула за время Dt передает стенке импульс силы , а за время сек передаёт стенке импульс силы равный , где k – число ударов молекул за 1 сек. Так как - промежуток времени между двумя последовательными ударами,. то , тогда . Теперь подсчитаем суммарный импульс силы, который передают стенке N1 молекул, движущихся вдоль оси x, за 1 сек , где скобки < > обозначают среднее значение выражения, стоящего в скобках. Если извлечь корень квадратный из < V2 >, получим среднюю квадратичную скорость молекул, которую будем обозначать <Vкв> - средняя квадратичная скорость молекул газа. Давление, оказываемое газом на грань куба, равно: , где n – концентрация молекул. Запишем это выражение в виде , чтобы подчеркнуть, что в левую часть этого выражения входит средняя кинетическая энергия поступательного движения молекулы . Тогда - основное уравнение молекулярно-кинетической теории ( уравнение Клаузиуса ) С учетом уравнения состояния идеального газа: получаем выражение для средней кинетической энергии поступательного движения молекул: - средняя кинетическая энергия поступательного движения молекул. Мы видим, что величина kT есть мера энергии теплового движения молекул.

Газовые законы установлены в 17 веке экспериментально. Однако, их можно получить, используя уравнение Менделеева - Клапейрона.

Закон Бойля-Мариотта.Для данногоколичества вещества рассмотрим изотермический процесс, то есть процесс, протекающий без изменения температуры (Т= const). Используя уравнение (2.6) или (2.7), получим уравнение изотермы, выраженное через давление и объём газа: (2.7). или (2.7’). Для данного количества вещества при изотермическом процессе произведение давления на объём есть величина постоянная. Для построения диаграммы Р(V) выразим давление через объем . Зависимость между давлением и объёмом – обратно пропорциональная, графически представлена гиперболой на рис.2.3 а. Температурные зависимости давления и объёма представлены на рис.2.3 б и в, соответственно.

Закон Гей-Люссака.Для данного количества вещества рассмотрим изобарический процесс, то есть процесс, протекающий без изменения давления

(Р = const). Используя уравнение (2.6) или (2.7), получим уравнениеизобары, выраженное через температуру и объём: ,(2.8). через параметры начального и конечного состояния или . Для данного количества вещества при изобарическом процессе отношение объёма к температуре (или наоборот) есть постоянная величина. Изобарический закон можно записать и в виде: . Здесь V0 - объём газа при t=00C, t- температура в 0С, a - термический коэффициент объемного расширения; . Для идеального газа , , но , тогда - термический коэффициент объёмного расширения идеального газа равен величине, обратной температуры. Изображение этого процесса приведено на рис. 2.4. Закон Шарля. Для данного количества вещества рассмотрим изохорический процесс, то есть процесс, протекающий без изменения объёма (V = const). Используя уравнение (2.6) или (2.7), получим уравнениеизохоры, выраженное через температуру и давление газа: , (2.9) через параметры начального и конечного состояния или . Для данного количества вещества при изохорическом процессе отношение давления к температуре (или наоборот) есть величина постоянная.

Изображение этого процесса приведено на рис. 2.5.

Закон АвогадроПри одинаковых давлениях (Р) и температурах (Т) в равных объемах (V) любого газа содержится одинаковое число молекул. , следовательно, N1 = N2

Закон Дальтона(для смеси газов) Давление смеси газов равно сумме парциальных давлений Рсм12+... +РК (2.10). Этот закон можно также получить, используя уравнение состояния идеального газа. , - парциальное давление - давление, которое оказывал бы данный компонент газа, если бы он один занимал весь объем, предоставленный смеси.

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2021 pdnr.ru Все права принадлежат авторам размещенных материалов.