Пиши Дома Нужные Работы

Обратная связь

Самодовільних процесів. Ентропія

Перший метод – метод факторів інтенсивності. Інтенсивними факторами можуть бути тиск, температура тощо. За цим методом самодовільні процеси можуть проходити в напрямку вирівнювання певного фактора інтенсивності. Рівновазі відповідає однакове значення цього фактора у всіх частинах системи.

Метод факторів інтенсивності є обмеженим. Він не придатний для визначення напрямку процесів в однорідних системах, де фактори інтенсивності однакові, наприклад, в хімічних реакціях.

Більш загальним є метод термодинамічних функцій. Він полягає в тому, що для конкретних умов існування певної термодинамічної системи підбирається термодинамічна функція стану системи, яка при протіканні самодовільного процесу збільшується (або зменшується) і в стані рівноваги досягає екстремального значення.

Клаузіус показав, що для ізольованихсистем такою функцією може бути ентропія (S).

Ентропіясистеми – це функція стану системи, диференціал якої (dS) для елементарного рівноважного (оборотного) процесу дорівнює відношенню нескінченно малої кількості теплоти (dQ), поглинутою системою, до абсолютної температури системи

. (4.1)

Для нерівноважного (необоротного, самодовільного) процесу

. (4.2)

Ентропія залежить від хімічної природи речовин і температури. Згідно з постулатом Планка, ентропія індивідуальної кристалічної речовини при абсолютному нулі дорівнює нулю: Sо = 0. Із зростанням температури ентропія збільшується, а при фазових перетвореннях збільшується стрибкоподібно. Ентропію речовини при стандартних умовах позначають . Для багатьох речовин стандартна ентропія визначена і наводиться у довідниках (табл. Д.2). Одиницею вимірювання ентропії є Дж/(моль×К).



Для ізольованих систем, де відсутній обмін теплотою з навколишнім середовищем, dQ = 0. Тоді з рівнянь (4.1-4.2) випливає, що для оборотних процесів dS = 0 (тобто ентропія стала), а для необоротних, самодовільних процесів dS > 0 (тобто ентропія у ході процесу зростає).

Таким чином, визначивши зміну ентропії при процесі, можна робити висновок про напрямок процесу. Враховуючи, що ентропія – функція стану системи і dS є повним диференціалом ентропії, можна сформулювати правила визначення напрямку процесів:

- якщо DS > 0(ентропія зростає), то процес протікає самодовільно;

- якщо DS < 0(ентропія зменшується), то прямий процес самодовільно не проходить. Самодовільно протікає зворотний процес;

- якщо DS = 0(ентропія не змінюється), то система знаходиться у стані рівноваги.

За допомогою поняття ентропії можна об'єднати перший і другий закони термодинаміки.

З другого закону термодинаміки випливає, що

.

Звідси dS £ T×dS. Підставимо це значення в рівняння першого закону - dQ = dU + dW і одержимо:

Т×dS ³ dU + dW

або

Т×dS - dU ³ dW. (4.3)

З рівняння (4.3) видно, що максимальна робота має місце лише при оборотних процесах (теплота у цьому разі мінімальна).Для необоротних процесів, навпаки, теплота максимальна, а робота мінімальна.

 

Методи розрахунків ентропії речовин і зміни ентропії

Процесів (реакцій)

Зміну ентропії при фазовому перетворенні речовини (DSф.п.) можна визначити за рівнянням

, (4.1)

де DНф.п.(Qф.п.) – теплота фазового перетворення, Дж/моль; Тф.п. – температура фазового перетворення, К.

Ентропію речовини при будь-якій температурі можна визначити з наступних міркувань:

; ;

; ;

; . (4.5)

Рівняння (4.5) можна розв'язати як за допомогою емпіричного ступеневого ряду

, (4.6)

так і через функції тепловмісту і приведеної енергії Гіббса

, (4.7)

де - приведена енергія Гіббса, Дж/(моль×К); - тепловміст, кДж/моль.

Приведена енергія Гіббса для багатьох речовин наводиться в довідниках (табл. Д.4).

Якщо в інтервалі температур від 298 до Т К має місце фазове перетворення, треба користуватись рівнянням (4.7), бо рівняння (4.6) у цьому випадку набуває вигляду

. (4.8)

Як вже вказувалось, для визначення напрямку хімічної реакції в ізольованій системі треба розраховувати зміну ентропії реакції (DS). Розглянемо цей випадок на прикладі одержання цинку пірометалургійним методом. У цьому випадку цинкову руду випалюють до оксиду цинку, останній змішують з коксом і нагрівають до 1370-1470 К. При цьому відбувається реакція

ZnO + C = Zn + CO,

зміна ентропії якої при сталій температурі буде дорівнювати

При визначенні SТ,і за допомогою емпіричного ступеневого ряду теплоємкості одержимо рівняння

, (4.9)

де - зміна стандартної ентропії реакції, Дж/К; Dа, Dв, Dс і Dс' – зміна коефіцієнтів емпіричного ступеневого ряду.

Якщо ж визначити SТ,і через тепловміст і приведену енергію Гіббса, зміна ентропії реакції виражається рівнянням

, (4.10)

де - зміна тепловмісту у ході реакції, кДж; - зміна приведеної енергії Гіббса, Дж/К.

Наведені рівняння визначення DSТ (4.9-4.10) придатні як для оборотних, так і необоротних процесів. Це є наслідком властивості ентропії як функції стану системи, бо зміна функції стану від шляху процесу не залежить.

 






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.