Пиши Дома Нужные Работы

Обратная связь

Глинистые минералы, их строение, свойства и значение в почвоведении.

Почва более чем на девяносто процентов состоит из минеральных компонен­тов и содержит основной запас питательных веществ для растений. Почва являет­ся полидисперсной системой и имеет довольно сложный механический, минера­логический и химический состав. В качестве примера в табл. 1.1 приведен средний химический состав твердой фазы почвы (по А. П. Виноградову).

Как видно из таблицы, почти половина твердой фазы почвы приходится на кислород, одна треть — на кремний, свыше 10% —на алюминий и железо и толь­ко 7% — на все остальные элементы. Из всех перечисленных элементов только азот (а также частично углерод, водород, кислород, фосфор и сера) содержится в органической части почвы. Все остальные элементы приходятся на минераль­ную часть почвы, которая состоит из большого числа различных минералов в виде частиц, имеющих размеры от 10-9 до 10-3 м и более.

Все минералы, содержащиеся в почве, по происхождению подразделяются на первичные и вторичные. Первичные минералы имеют преимущественно магматиче­ское происхождение. Из них наиболее распространены в почвах кварц (окись кремния), полевые шпаты, амфиболы, пироксены и слюды, т. е. минералы, включающие

 

Таблица 1.1 Средний химический состав твердой фазы почвы

кислородные соединения кремния. Эти минералы составляют основную массу магматических и почвообразующих пород. В почвах первичные минералы обычно присутствуют в виде более или менее крупных частиц размером от 10-3 до 10-6 м, и только очень незначительная часть их имеет более высокую степень дисперсности.

Первичные минералы в условиях земной поверхности неустойчивы и под дей­ствием сил выветривания переходят в более устойчивые соединения — вторичные минералы. Процесс выветривания протекает под влиянием как чисто физических (колебания температуры, ветер, движущая сила воды), так и химических и био­логических факторов. В результате этого из первичных минералов могут образо­ваться вторичные минералы простого состава: гидроксиды железа (II) и (III), алюминия, гидроксид кремния и некоторые другие соединения.



Кроме того, в процессе выветривания образуются также вторичные минералы более сложного строения (алюмо- и феррисиликаты). Эти последние более высо­кодисперсны, чем первичные, и имеют исключительно важное значение в создании основного свойства почвы — ее плодородия.

Все вторичные минералы сложного состава имеют пластинчатое строение и содержат химически связанную воду. Поскольку эти минералы являются важней­шей составной частью различных глин, они получили название глинистых или глинных минералов.

Число глинистых минералов довольно велико, но в почвах наиболее широкое распространение и значение для плодородия имеют в основном три группы мине­ралов: каолинитовая, монтмориллонитовая и гидрослюдистая.

К минералам каолинитовой группы относятся каолинит [Al2Si2O5(OH)4] и галлуазит [Al2Si2O5(OH)4·2H2O], а также некоторые другие минералы. Каолинитовые глины содержат примерно 20—25% илистых частиц (меньше 0,001 мм), из них 5—10% частиц коллоидных размеров (меньше 0,25 микрона). Минералы этой группы довольно часто встречаются во многих типах почв. Они имеют сравни­тельно небольшую набухаемость и липкость.

Из минералов монтмориллонитовой группы в почвах наиболее распростране­ны монтмориллонит [Al2Si4O10(OH)2·nH2O], бейделлит [Al2Si3O9(OH)3·nH2O], нонтронит [Fe2Si4O10(OH)3 ·nН2О] и некоторые другие. Монтмориллонитовые гли­ны обладают в отличие от каолинитовых высокой набухаемостью, липкостью и связностью. Для них весьма характерным признаком является высокая степень дисперсности (до 80% частиц меньше 0,001 мм, из которых 40—45% меньше 0,25 микрона).

Среди глинистых минералов, встречающихся в почвах, большое место принад­лежит минералам группы гидрослюд. В эту группу входят гидромусковит (иллит) {KAl2[(Si, Al)4O10](OH)2·nH2O}, гидробиотит {K(Mg, Fe)3 [(Al, Si)4O10] (OH)2·nH2O} и вермикулит {(Mg, Fe2+, Fe3+)2[(A1, Si)4O10](OH)2 ·4H2O}.

Глинистые минералы различаются по структуре.

Кристаллическая решетка различных глинистых минералов построена из од­них и тех же элементарных структурных единиц, состоящих из атомов кремния и кислорода, а также из атомов алюминия, кислорода и водорода. Кроме перечис­ленных выше элементов в состав глинистых минералов могут входить Fe, Mg, К, Мn и др. В подавляющем большинстве глинистые минералы имеют слоистое строе­ние и относятся к слоистым силикатам. Как показали новейшие рентгенографиче­ские и электронографические исследования, слои глинистых минералов состоят из сочетания кремнекислородных и кислород-гидроксилалюминиевых соединений.

Установлено, что важнейшие физико-химические и водно-физические свойст­ва почвы — емкость поглощения, гидрофильность, связность, липкость, реакция среды и многие другие — находятся в прямой зависимости от минералогического состава. Теперь известно, что доступность для растений тех или иных питатель­ных элементов в значительной мере зависит от вида минералов, содержащихся в почве, и от степени их дисперсности.

Глинистые минералы в основном сосредоточены в илистой (менее 1 мкм) фракции почв. Составом и строением минералов этой фракции в значительной сте­пени определяется поглотительная способность почвы по отношению к катионам и анионам. Чем выше емкость поглощения почвы, тем больший запас питательных элементов в ней сосредоточен, следовательно, лучше ее потенциальное плодоро­дие.

Минералы группы монтмориллонита обладают не только наибольшей степенью дисперсности, но и наибольшей поглотительной способностью (1,0—1,5 мкг-экв/кг). Эти минералы способны сильно набухать и содержат до 30% связанной воды, ко­торая не может усваиваться растениями. Присутствие минералов монтмориллони­товой группы в почвах всегда положительно сказывается на растениях, обеспечи­вает большее содержание в них необходимых питательных элементов. Однако поч­вы, очень богатые монтмориллонитом, имеют невысокую агрономическую ценность. При высыхании таких почв образуются трещины, водопроницаемость их становит­ся неодинаковой, на поверхности образуется прочная корка. Эти отрицательные свойства монтмориллонита особенно сильно проявляются на почвах, бедных гу­мусом. При достаточном количестве гумуса физико-химические свойства такой поч­вы значительно улучшаются за счет образования водопрочных органо-минеральных агрегатов. Практика показывает, что добавление в сильно деградированные песчаные почвы глин, содержащих минералы монтмориллонитовой группы, по­ложительно сказывается на плодородии.

Минералы каолинитовой группы по своим свойствам резко отличаются от монтмориллонита. Каолинит обладает очень малой емкостью поглощения (0,07— 0,10 мкг-экв/кг); он практически не набухает и содержит весьма незначительное количество воды. Почвы, в которых много этого минерала, вследствие малой ем­кости поглощения отличаются низким плодородием. Сам каолинит не содержит поглощенных оснований и поэтому не является источником питания для растений. Почвы, содержащие много каолинита, хорошо отзываются на внесение в них ка­лия и других оснований.

Минералы группы гидрослюд чрезвычайно богаты легкодоступным для расте­ний калием (до 6—7%). Емкость поглощения гидрослюд в несколько раз выше, чем у каолинита, но в два-три раза меньше, чем у монтмориллонита. Почвы, содержащие много гидрослюдистых минералов, практически не нуждаются в калий­ных удобрениях.

В трудах многих ученых отмечается активное участие глинистых минералов в повышении степени доступности фосфатов почвы, калия и микроэлементов. На­личие в почвах полуторных оксидов, а также токсичного для растений подвижно­го алюминия обусловлено составом и строением высокодисперсных (в том числе и глинистых) минералов. Таким образом, качественный и количественный состав вторичных минералов имеет одно из первостепенных значений в создании основно­го свойства почвы — ее плодородия.

 

§7. Характеристика жидкого агрегатного состояния.

Жидкости по своим свойствам занимают промежуточное поло­жение между твердыми телами и газами и сходны как с теми, так ис другими. По некоторым свойствам жидкости сходны с газами: они текучи, не имеют определенной формы, аморфны и изотропны, т. е. однородны по своим свойствам в любом направлении. С дру­гой стороны, жидкости обладают объемной упругостью, как твер­дые тела. Они упруго противодействуют не только всестороннему сжатию, но и всестороннему растяжению. Молекулы их стремятся к некоторому упорядоченному расположению в пространстве, т. е. жидкости имеют зачатки кристаллического строения.

Жидко­сти отличаются высокой текучестью и принимают форму того сосу­да, в котором они находятся.

Средней кинетической энергии молекулы жидкости вполне хва­тает, чтобы совершать перескоки из одного положения равновесия в другое, но этой энергии явно недостаточно для того, чтобы пол­ностью преодолеть силы взаимодействия окружающих молекул. Из жидкости вырывается лишь небольшое число наиболее быстрых молекул (процесс испарения). Тепловые движения молекул жидкости не выходят за пределы действия когезионных сил, поэтому жидкости имеют постоянный объем.

Огромную роль в свойствах жидкостей играет объем молекул, их форма и полярность. Если молекулы жидкости полярны, то происходит ассоциация (объединение) двух или более молекул в сложный комплекс (рис. 1.5). В таких жидкостях, как вода, жидкий аммиак, большую роль в ассоциа­ции молекул играет наличие так называе­мой водородной связи.

Свойства жидкостей в значительной ме­ре зависят от степени ассоциации их моле­кул. Как показывает опыт, ассоциирован­ные жидкости обладают более высокой тем­пературой кипения, меньшей летучестью. С повышением температуры комплексы распадаются и тем сильнее, чем слабее силы взаимодействия мо­лекул в комплексе.

Как уже упоминалось в начале этой главы, существуют и так называемые кристаллические жидкости или жидкие кристаллы, которые, будучи жидкостями, обладают, как и кристаллические вещества, анизотропными свойствами. Различают термотропные и лиотропные жидкие кристаллы.

Следует отметить, что частичная упорядоченность молекул характерна для целого ряда биологически важных веществ — белково-липидных систем, холесте­рина, некоторых солей жирных кислот и т. п. Строгая упорядоченность, вообще ха­рактерная для биологических систем, также определяется особым типом органи­зации макромолекулярных структур и по своей сущности является динамической. В живом организме эта упорядоченность поддерживается за счет равновесия между непрерывно идущими процессами распада и образования вещества и свя­зана с увеличением энтропии той системы, в которой находится организм.

§8. Внутреннее трение (вязкость) жидкостей.

Всякое тело при движении испытывает сопротивление среды, в которой оно движется. Если перемешивать стеклянной палочкой воду, сахарный сироп, глицерин, мед и т. п., ощущается сопротив­ление движению палочки. Сила, противодействующая движению тела, носит название силы трения.

Когда тело испытывает сопротивление движению со стороны своих же частиц, противодействующая сила называется внутрен­ним трением или вязкостью. Таким образом, вязкость — это внут­реннее трение, проявляющееся при относительном движении со­седних слоев жидкости и зависящее от сил сцепления (взаимодей­ствия) между молекулами. Во всех жидкостях при перемещении одних слоев относительно других возникают более или менее зна­чительные силы трения, направленные по касательной к поверхно­сти этих слоев. Сила внутреннего трения F прямо пропорциональна площади S трущихся друг о друга слоев жидкости и скорости их движения dU и обратно пропорциональна расстоянию этих слоев dx один от другого:

1.30

(формула Ньютона), где η) — коэффициент пропорциональности.

Если площадь S=l м2, dU/dx= 1, то F = η и носит название коэффициента вязкости или коэффициента внутреннего трения. Этот коэффициент зависит от природы жидкости и ее температуры. Из уравнения (I,30) определяем

1.31

При выражении силы трения F в ньютонах, dx в м, dU в м/с, a S в м2, получим

Вязкость является величиной, характерной для данной жид­кости.

 

Жидкости, подчиняющиеся уравнению (I.31), получили назва­ние ньютоновских. Однако есть жидкости, которые не подчиняются этому уравнению, например растворы высокомолекулярных соеди­нений.

Вязкость жидкостей в значительной степени зависит от темпе­ратуры: с повышением её вязкость жидкости понижается.

Величина, обратная вязкости, т. е. 1/η, называется текучестью. Эфир, этиловый спирт являются легкотекучими или легкопо­движными, а глицерин, деготь — труднотекучими, или, иначе, ма­лоподвижными жидкостями.

Значение вязкости в природе очень велико. В биологических системах она влияет на протекание ряда важнейших процессов в живом организме. Большую роль вязкость играет в различных технологических процессах в промышленности. В частности, ско­рость движения различных жидкостей по трубам в основном зави­сит от вязкости транспортируемой жидкости.

С понижением вязкости жидкости при нагревании связано по­вышение электрической проводимости растворов электролитов (проводников второго рода).






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.