Пиши Дома Нужные Работы

Обратная связь

Исследование функции. Построение графика.

Исследование функции — задача, заключающаяся в определении основных параметров заданной функции.

График функции — понятие в математике, которое даёт представление о геометрическом образе функции

В ходе исследования находятся и выписываются по-порядку многие параметры функции как объекта.

Область определения и область допустимых значений функции.

При нахождении области определения функции следует обращать внимание на выражения содержащие дроби, так как, знаменатель дроби не может обращаться в нуль. Следует обращать внимание на корни, так как, подкоренное выражение должно быть неотрицательным. Особое внимание следует обратить на логарифмы, входящие в выражение

Четность, нечетность функции.
Функция называется чётной, если . График чётной функции симметричен относительно оси ординат. Например, функция - чётная, так как . Функция называется нечётной, если График функции симметричен относительно начала координат (центральная симметрия). Для примера рассмотрим функцию . Она нечётная, так как . Если функция ни чётная, ни нечётная, то говорят, что функция имеет график общего положения. Если существует такое, что для любого выполняется условие , то функция называется периодической. Наименьшее из чисел , удовлетворяющих указанному условию, называют периодом. График периодической функции строят так. Сначала строят график на одном периоде, а потом копируют построенный участок вдоль всей оси . Запись периодические функции, как правило, содержит тригонометрические функции синуса, косинуса, тангенса и котангенса.

Точки пересечения с осями.

Абсцисса пересечение с осью ищется исходя из уравнения . Ордината пересечение с осью ищется подстановкой значения в выражение функции Если пересечение с осью найти не удаётся, то обходятся без него.



Функция называется непрерывнойв точке , если она определена в этой точке и существует предел , который равен значению функции. То есть .
Функция называется непрерывной на промежутке (отрезке), если она непрерывна в каждой точке этого промежутка (отрезка). График непрерывной функции может быть изображён без отрыва карандаша (мела, пера). Точка является точкой разрыва функции, если функция определена и непрерывна в окрестности точки , а в самой точке не является непрерывной (хотя может быть определённой). В этом случае говорят, что функция терпит разрыв в точке . Выделяют три типа точекразрыва: устранимый разрыв; конечный разрыв (разрыв первого рода); бесконечный разрыв (разрыв второго рода).

Асимптоты функции.

Прямая называется асимптотой графика функции, если расстояние от точек графика до этой прямой стремится к нулю при бесконечном удалении от начала координат вдоль графика функции. Образно выражаясь, график как бы прилипает к асимптоте. Асимптоты бывают вертикальные, наклонные и горизонтальные. Вертикальные асимптоты ищутся по точкам разрыва второго рода. Если в точке функция терпит бесконечный разрыв, то вертикальная прямая является вертикальной асимптотой. График функции имеет наклонную асимптоту при (соответственно при ), если существуют конечные пределы При этом уравнение наклонной асимптоты . Если хотя бы один из двух пределов не существует (или бесконечен), то соответствующей наклонной асимптоты нет. Если и существует конечный предел , то асимптота является горизонтальной и её уравнение

 

Экстремумы и интервалы монотонности.

Функция имеет максимум в точке , если её значение в этой точке больше, чем её значения во всех точках некоторой окрестности, содержащей точку Функция имеет минимум в точке , если её значение в этой точке меньше, чем её значения во всех точках некоторой окрестности, содержащей точку .

Для определения критических точек находим производную по соответствующим правилам и используя таблицу производных. В критических точках производная равна нулю или не существует. Определяем знак производной в интервалах между критическими точками. Если на некотором интервале производная положительна, то функция возрастает. Если производная отрицательна, то на данном интервале функция убывает.

Для определения точек перегиба находят вторую производную. В точке перегиба вторая производная равна нулю или не существует. По знаку второй производной в интервалах между точками перегиба определяют направление выпуклости графика функции. Если вторая производная положительна, то график функции выпуклый вниз. Если вторая производная отрицательная, то график функции выпуклый вверх.

 

 

[AK1]

[AK2]

Система квадратная, так как неизвестных две и это число равно количеству уравнений системы.






ТОП 5 статей:
Экономическая сущность инвестиций - Экономическая сущность инвестиций – долгосрочные вложения экономических ресурсов сроком более 1 года для получения прибыли путем...
Тема: Федеральный закон от 26.07.2006 N 135-ФЗ - На основании изучения ФЗ № 135, дайте максимально короткое определение следующих понятий с указанием статей и пунктов закона...
Сущность, функции и виды управления в телекоммуникациях - Цели достигаются с помощью различных принципов, функций и методов социально-экономического менеджмента...
Схема построения базисных индексов - Индекс (лат. INDEX – указатель, показатель) - относительная величина, показывающая, во сколько раз уровень изучаемого явления...
Тема 11. Международное космическое право - Правовой режим космического пространства и небесных тел. Принципы деятельности государств по исследованию...



©2015- 2024 pdnr.ru Все права принадлежат авторам размещенных материалов.