Исследование функции. Построение графика. Исследование функции — задача, заключающаяся в определении основных параметров заданной функции.
График функции — понятие в математике, которое даёт представление о геометрическом образе функции
В ходе исследования находятся и выписываются по-порядку многие параметры функции как объекта.
Область определения и область допустимых значений функции.
При нахождении области определения функции следует обращать внимание на выражения содержащие дроби, так как, знаменатель дроби не может обращаться в нуль. Следует обращать внимание на корни, так как, подкоренное выражение должно быть неотрицательным. Особое внимание следует обратить на логарифмы, входящие в выражение
Четность, нечетность функции. Функция называется чётной, если . График чётной функции симметричен относительно оси ординат. Например, функция - чётная, так как . Функция называется нечётной, если График функции симметричен относительно начала координат (центральная симметрия). Для примера рассмотрим функцию . Она нечётная, так как . Если функция ни чётная, ни нечётная, то говорят, что функция имеет график общего положения. Если существует такое, что для любого выполняется условие , то функция называется периодической. Наименьшее из чисел , удовлетворяющих указанному условию, называют периодом. График периодической функции строят так. Сначала строят график на одном периоде, а потом копируют построенный участок вдоль всей оси . Запись периодические функции, как правило, содержит тригонометрические функции синуса, косинуса, тангенса и котангенса.
Точки пересечения с осями.
Абсцисса пересечение с осью ищется исходя из уравнения . Ордината пересечение с осью ищется подстановкой значения в выражение функции Если пересечение с осью найти не удаётся, то обходятся без него.
Функция называется непрерывнойв точке , если она определена в этой точке и существует предел , который равен значению функции. То есть . Функция называется непрерывной на промежутке (отрезке), если она непрерывна в каждой точке этого промежутка (отрезка). График непрерывной функции может быть изображён без отрыва карандаша (мела, пера). Точка является точкой разрыва функции, если функция определена и непрерывна в окрестности точки , а в самой точке не является непрерывной (хотя может быть определённой). В этом случае говорят, что функция терпит разрыв в точке . Выделяют три типа точекразрыва: устранимый разрыв; конечный разрыв (разрыв первого рода); бесконечный разрыв (разрыв второго рода).
Асимптоты функции.
Прямая называется асимптотой графика функции, если расстояние от точек графика до этой прямой стремится к нулю при бесконечном удалении от начала координат вдоль графика функции. Образно выражаясь, график как бы прилипает к асимптоте. Асимптоты бывают вертикальные, наклонные и горизонтальные. Вертикальные асимптоты ищутся по точкам разрыва второго рода. Если в точке функция терпит бесконечный разрыв, то вертикальная прямая является вертикальной асимптотой. График функции имеет наклонную асимптоту при (соответственно при ), если существуют конечные пределы При этом уравнение наклонной асимптоты . Если хотя бы один из двух пределов не существует (или бесконечен), то соответствующей наклонной асимптоты нет. Если и существует конечный предел , то асимптота является горизонтальной и её уравнение
Экстремумы и интервалы монотонности.
Функция имеет максимум в точке , если её значение в этой точке больше, чем её значения во всех точках некоторой окрестности, содержащей точку Функция имеет минимум в точке , если её значение в этой точке меньше, чем её значения во всех точках некоторой окрестности, содержащей точку .
Для определения критических точек находим производную по соответствующим правилам и используя таблицу производных. В критических точках производная равна нулю или не существует. Определяем знак производной в интервалах между критическими точками. Если на некотором интервале производная положительна, то функция возрастает. Если производная отрицательна, то на данном интервале функция убывает.
Для определения точек перегиба находят вторую производную. В точке перегиба вторая производная равна нулю или не существует. По знаку второй производной в интервалах между точками перегиба определяют направление выпуклости графика функции. Если вторая производная положительна, то график функции выпуклый вниз. Если вторая производная отрицательная, то график функции выпуклый вверх.
[AK1]
[AK2]
Система квадратная, так как неизвестных две и это число равно количеству уравнений системы.
|